Multiple forms of atypical rearrangements generating supernumerary derivative chromosome 15

Nemours Biomedical Research, Alfred I, duPont Hospital for Children, Wilmington, Delaware, 19803, USA.
BMC Genetics (Impact Factor: 2.36). 02/2008; 9:2. DOI: 10.1186/1471-2156-9-2
Source: PubMed

ABSTRACT Maternally-derived duplications that include the imprinted region on the proximal long arm of chromosome 15 underlie a complex neurobehavioral disorder characterized by cognitive impairment, seizures and a substantial risk for autism spectrum disorders1. The duplications most often take the form of a supernumerary pseudodicentric derivative chromosome 15 [der(15)] that has been called inverted duplication 15 or isodicentric 15 [idic(15)], although interstitial rearrangements also occur. Similar to the deletions found in most cases of Angelman and Prader Willi syndrome, the duplications appear to be mediated by unequal homologous recombination involving low copy repeats (LCR) that are found clustered in the region. Five recurrent breakpoints have been described in most cases of segmental aneuploidy of chromosome 15q11-q13 and previous studies have shown that most idic(15) chromosomes arise through BP3:BP3 or BP4:BP5 recombination events.
Here we describe four duplication chromosomes that show evidence of atypical recombination events that involve regions outside the common breakpoints. Additionally, in one patient with a mosaic complex der(15), we examined homologous pairing of chromosome 15q11-q13 alleles by FISH in a region of frontal cortex, which identified mosaicism in this tissue and also demonstrated pairing of the signals from the der(15) and the normal homologues.
Involvement of atypical BP in the generation of idic(15) chromosomes can lead to considerable structural heterogeneity.

Download full-text


Available from: Karen Nicole Leung, Jun 17, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: STUDY QUESTION: Are DNMT3B promoter polymorphisms among maternal risk factors for the birth of a child with Down syndrome (DS)? SUMMARY ANSWER: Present results suggest that combinations of functional DNMT3B promoter polymorphisms might modulate maternal risk of birth of a child with DS. WHAT IS KNOWN ALREADY: The DNMT3B gene codes for DNA methyltransferase 3b (DNMT3b), a protein required for genome-wide de novo methylation, for the establishment of DNA methylation patterns during development and for regulating the histone code and DNA methylation at centromeric regions. Two common functional DNMT3B promoter polymorphisms, namely -149 C > T (rs2424913) and -579 G > T (rs1569686), have been extensively investigated in cancer genetic association studies but less is known about their role in non-cancer diseases. Early in 1999, it was supposed that impaired DNA methylation of pericentromeric regions might represent a maternal risk factor for having a baby with DS. STUDY DESIGN, SIZE AND DURATION: We aimed to investigate DNMT3B -149 C > T and -579 G > T polymorphisms as maternal risk factors for the birth of a child with DS. The study was performed on DNA samples from 172 mothers of DS individuals (135 aged <35 years when they conceived) and 157 age-matched mothers of unaffected individuals. PARTICIPANTS/MATERIALS, SETTING AND METHODS: Genotyping was performed by means of the PCR-RFLP technique. MAIN RESULTS AND THE ROLE OF CHANCE: The DNMT3B -579T allele [odds ratio (OR) = 0.68; 95% confidence interval (CI) = 0.48-0.94, P = 0.02], the DNMT3B -579 GT genotype (OR = 0.55; 95% CI = 0.35-0.87 , P = 0.01) and the combined DNMT3B -579 GT + TT genotype (OR = 0.55; 95% CI = 0.36-0.86 , P = 0.008) were associated with reduced risk of birth of a child with DS. A joint effect of the two polymorphisms was observed and the combined -579 GT/-149 CC genotype resulted in decreased DS risk (OR = 0.22; 95% CI = 0.08-0.64, P = 0.003). The effect remained statistically significant after Bonferroni's correction for multiple comparisons. Similar results were obtained when the analysis was restricted to women who conceived a DS child before 35 years of age. LIMITATIONS AND REASONS FOR CAUTION: To the best of our knowledge, this is the first genetic association study aimed at evaluating DNMT3B polymorphisms as maternal risk factors for DS. Replication of the findings in other populations is required. WIDER IMPLICATIONS OF THE FINDINGS: If confirmed in subsequent studies, DNMT3B promoter polymorphisms might be additional markers to be taken into account when evaluating the contribution of one-carbon (folate) metabolism to the maternal risk of birth of a child with DS. STUDY FUNDING/COMPETING INTEREST(S): None of the authors has any competing interest. This work was partially supported by the Italian Ministry of Health and '5 per mille' funding.
    Human Reproduction 10/2012; 28(2). DOI:10.1093/humrep/des376 · 4.59 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inv dup(15) or idic(15) syndrome displays distinctive clinical findings represented by early central hypotonia, developmental delay and intellectual disability, epilepsy, and autistic behaviour. Incidence at birth is estimated at 1 in 30,000 with a sex ratio of almost 1:1. Developmental delay and intellectual disability affect all individuals with inv dup(15) and are usually moderate to profound. Expressive language is absent or very poor and often echolalic. Comprehension is very limited and contextual. Intention to communicate is absent or very limited. The distinct behavioral disorder shown by children and adolescents has been widely described as autistic or autistic-like. Epilepsy with a wide variety of seizure types can occur in these individuals, with onset between 6 months and 9 years. Various EEG abnormalities have been described. Muscle hypotonia is observed in almost all individuals, associated, in most of them, with joint hyperextensibility and drooling. Facial dysmorphic features are absent or subtle, and major malformations are rare. Feeding difficulties are reported in the newborn period. Chromosome region 15q11q13, known for its instability, is highly susceptible to clinically relevant genomic rearrangements, such as supernumerary marker chromosomes formed by the inverted duplication of proximal chromosome 15. Inv dup(15) results in tetrasomy 15p and partial tetrasomy 15q. The large rearrangements, containing the Prader-Willi/Angelman syndrome critical region (PWS/ASCR), are responsible for the inv dup(15) or idic(15) syndrome. Diagnosis is achieved by standard cytogenetics and FISH analysis, using probes both from proximal chromosome 15 and from the PWS/ASCR. Microsatellite analysis on parental DNA or methylation analysis on the proband DNA, are also needed to detect the parent-of-origin of the inv dup(15) chromosome. Array CGH has been shown to provide a powerful approach for identifying and detecting the extent of the duplication. The possible occurrence of double supernumerary isodicentric chromosomes derived from chromosome 15, resulting in partial hexasomy of the maternally inherited PWS/ASCR, should be considered in the differential diagnosis. Large idic(15) are nearly always sporadic. Antenatal diagnosis is possible. Management of inv dup(15) includes a comprehensive neurophysiologic and developmental evaluation. Survival is not significantly reduced. The inv dup(15) or idic(15) syndrome can also be termed "tetrasomy 15q". About 160 patients have been reported in the medical literature [1-5].
    Orphanet Journal of Rare Diseases 12/2008; 3:30. DOI:10.1186/1750-1172-3-30 · 3.96 Impact Factor