A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages

Biomolecular Science Center, College of Medicine, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 04/2008; 283(10):6337-46. DOI: 10.1074/jbc.M707861200
Source: PubMed

ABSTRACT Activated macrophages play an important role in many inflammatory diseases. However, the molecular mechanisms controlling macrophage activation are not completely understood. Here we report that a novel CCCH-zinc finger protein family, MCPIP1, 2, 3, and 4, encoded by four genes, Zc3h12a, Zc3h12b, Zc3h12c, and Zc3h12d, respectively, regulates macrophage activation. Northern blot analysis revealed that the expression of MCPIP1 and MCPIP3 was highly induced in macrophages in response to treatment with lipopolysaccharide (LPS). Although not affecting cell surface marker expression and phagocytotic function, overexpression of MCPIP1 significantly blunted LPS-induced inflammatory cytokine and NO(2)(.) production as well as their gene expression. Conversely, short interfering RNA-mediated reduction in MCPIP1 augmented LPS-induced inflammatory gene expression. Further studies demonstrated that MCPIP1 did not directly affect the mRNA stability of tumor necrosis factor alpha and monocyte chemoattractant protein 1 (MCP-1) but strongly inhibited LPS-induced tumor necrosis factor alpha and inducible nitric-oxide synthase promoter activation. Moreover, we found that forced expression of MCPIP1 significantly inhibited LPS-induced nuclear factor-kappaB activation. These results identify MCP-induced proteins, a novel CCCH-zinc finger protein family, as negative regulators in macrophage activation and may implicate them in host immunity and inflammatory diseases.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Obese adipose tissue (AT) inflammation is characterized by dysregulated adipokine production and immune cell accumulation. Cluster of differentiation (CD) 8(+) T cell AT infiltration represents a critical step that precedes macrophage infiltration. n-3 (ω-3) Polyunsaturated fatty acids (PUFAs) exert anti-inflammatory effects in obese AT, thereby disrupting AT inflammatory paracrine signaling. We assessed the effect of n-3 PUFAs on paracrine interactions between adipocytes and primary CD8(+) T cells co-cultured at the cellular ratio observed in obese AT. C57BL/6 mice were fed either a 3% menhaden fish-oil + 7% safflower oil (FO) diet (wt:wt) or an isocaloric 10% safflower oil (wt:wt) control (CON) for 3 wk, and splenic CD8(+) T cells were isolated by positive selection (via magnetic microbeads) and co-cultured with 3T3-L1 adipocytes. Co-cultures were unstimulated (cells alone), T cell receptor stimulated, or lipopolysaccharide (LPS) stimulated for 24 h. In LPS-stimulated co-cultures, FO reduced secreted protein concentrations of interleukin (IL)-6 (-42.6%), tumor necrosis factor α (-67%), macrophage inflammatory protein (MIP) 1α (-52%), MIP-1β (-62%), monocyte chemotactic protein (MCP) 1 (-23%), and MCP-3 (-19%) vs. CON, which coincided with a 74% reduction in macrophage chemotaxis toward secreted chemotaxins in LPS-stimulated FO-enriched co-culture-conditioned media. FO increased mRNA expression of the inflammatory signaling negative regulators monocyte chemoattractant 1-induced protein (Mcpip; +9.3-fold) and suppressor of cytokine signaling 3 (Socs3; +1.7-fold), whereas FO reduced activation of inflammatory transcription factors nuclear transcription factor κB (NF-κB) p65 and signal transducer and activator of transcription 3 (STAT3) by 27% and 33%, respectively. Finally, mRNA expression of the inflammasome components Caspase1 (-36.4%), Nod-like receptor family pyrin domain containing 3 (Nlrp3; -99%), and Il1b (-68.8%) were decreased by FO compared with CON (P ≤ 0.05). FO exerted an anti-inflammatory and antichemotactic effect on the cross-talk between CD8(+) T cells and adipocytes and has implications in mitigating macrophage-centered AT-driven components of the obese phenotype. © 2015 American Society for Nutrition.
    Journal of Nutrition 04/2015; 145(4). DOI:10.3945/jn.114.205443 · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: According to the minimal criteria of the International Society of Cellular Therapy, mesenchymal stem cells (MSCs) are a population of undifferentiated cells defined by their ability to adhere to plastic surfaces when cultured under standard conditions, express a certain panel of phenotypic markers and can differentiate into osteogenic, chondrogenic and adipogenic lineages when cultured in specific inducing media. In parallel with their major role as undifferentiated cell reserves, MSCs have immunomodulatory functions which are exerted by direct cell-to-cell contacts, secretion of cytokines and/or by a combination of both mechanisms. There are no convincing data about a principal difference in the profile of cytokines secreted by MSCs isolated from different tissue sources, although some papers report some quantitative but not qualitative differences in cytokine secretion. The present review focuses on the basic cytokines secreted by MSCs as described in the literature by which the MSCs exert immunodulatory effects. It should be pointed out that MSCs themselves are objects of cytokine regulation. Hypothetical mechanisms by which the MSCs exert their immunoregulatory effects are also discussed in this review. These mechanisms may either influence the target immune cells directly or indirectly by affecting the activities of predominantly dendritic cells. Chemokines are also discussed as participants in this process by recruiting cells of the immune systems and thus making them targets of immunosuppression. This review aims to present and discuss the published data and the personal experience of the authors regarding cytokines secreted by MSCs and their effects on the cells of the immune system.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Minocycline, a broad-spectrum tetracycline antibiotic, has shown anti-inflammatory and neuroprotective effects in ischemic brain injury. The present study seeks to determine whether monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified modulator of inflammatory reactions, is involved in the cerebral neuroprotection conferred by minocycline treatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of minocycline-induced ischemic brain tolerance. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 2 h in male C57BL/6 mice and MCPIP1 knockout mice followed by 24- or 48-h reperfusion. Twelve hours before ischemia or 2 h after MCAO, mice were injected intraperitoneally with 90 mg/kg of minocycline hydrochloride. Thereafter, the animals were injected twice a day, at a dose of 90 mg/kg after ischemia until sacrificed. Transcription and expression of MCPIP1 gene was monitored by quantitative real-time PCR (qRT-PCR), Western blot, and immunohistochemistry. The neurobehavioral scores, infarction volumes, and proinflammatory cytokines in brain and NF-κB signaling were evaluated after ischemia/reperfusion. MCPIP1 protein and mRNA levels significantly increased in mouse brain undergoing minocycline pretreatment. Minocycline treatment significantly attenuated the infarct volume, neurological deficits, and upregulation of proinflammatory cytokines in the brain of wild type mice after MCAO. MCPIP1-deficient mice failed to evoke minocycline-treatment-induced tolerance compared with that of the control MCPIP1-deficient group without minocycline treatment. Similarly, in vitro data showed that minocycline significantly induced the expression of MCPIP1 in primary neuron-glial cells, cortical neurons, and reduced oxygen glucose deprivation (OGD)-induced cell death. The absence of MCPIP1 blocked minocycline-induced protection on neuron-glial cells and cortical neurons treated with OGD. Our in vitro and in vivo studies demonstrate that MCPIP1 is an important mediator of minocycline-induced protection from brain ischemia.
    Journal of Neuroinflammation 12/2015; 12(1):264. DOI:10.1186/s12974-015-0264-1 · 4.90 Impact Factor