Functional Magnetic Resonance Imaging of Methylphenidate and Placebo in Attention-Deficit/Hyperactivity Disorder During the Multi-Source Interference Task

Departments of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.
Archives of general psychiatry (Impact Factor: 14.48). 01/2008; 65(1):102-14. DOI: 10.1001/archgenpsychiatry.2007.16
Source: PubMed

ABSTRACT Previous studies have reported hypofunction, structural abnormalities, and biochemical abnormalities of the dorsal anterior midcingulate cortex (daMCC) in attention-deficit/hyperactivity disorder (ADHD). Stimulant medications are effective treatments for ADHD, but their neural effects have not been fully characterized.
To determine whether the methylphenidate hydrochloride osmotic-release oral system (OROS) would increase functional magnetic resonance imaging (fMRI) activation, compared with placebo, in the daMCC and other frontoparietal regions subserving attention during the Multi-Source Interference Task (MSIT).
Randomized, placebo-controlled, 6-week, before-after fMRI study.
Academic medical center ambulatory clinic.
Twenty-one adults with ADHD randomized to 6 weeks of treatment with methylphenidate OROS (n = 11) or placebo (n = 10).
Patients underwent fMRI twice while performing the MSIT (scan 1 at baseline and scan 2 at 6 weeks).
Group-averaged, random-effects, repeated-measures, general linear model analyses were used to compare daMCC (and whole-brain) fMRI activation during the MSIT. Individual-based daMCC volume-of-interest confirmatory analyses and behavioral data are also presented.
Performance and baseline fMRI measures in the daMCC and other a priori brain regions did not differ between groups. Group comparisons showed a group x scan interaction and t test confirmation of higher activation in the daMCC at 6 weeks in the methylphenidate OROS group than in the placebo group (P < 1 x 10(-4), cluster corrected for multiple comparisons). Individual daMCC volume-of-interest analyses confirmed group-averaged findings and suggested that daMCC activity might be related to clinical response. Methylphenidate OROS also produced higher activation in the dorsolateral prefrontal cortex and the parietal cortex at 6 weeks.
Methylphenidate OROS increased daMCC activation during the MSIT and may act, in part, by normalizing daMCC hypofunction in ADHD.

48 Reads
  • Source
    • "However, the degree to which the brain 0 s response curve follows the plasma concentration curve is entirely unknown. We chose 75 min because this is when the slope of the plasma concentration curve begins to flatten out, and because most prior studies of behavior and/or neuroimaging have used between 60 and 90 min from dosage to testing as the delay period (Barry et al., 2009; Chamberlain et al., 2009; Dodds et al., 2008; Peterson et al., 2009; Rubia et al., 2009a, 2009b; Wienbruch et al., 2005; Wilson et al., 2012; for an exception, see Bush et al. (2008)). Thus, 75 min was near the middle of the " standard " window. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to attend to particular stimuli while ignoring others is crucial in goal-directed activities and has been linked with prefrontal cortical regions, including the dorsolateral prefrontal cortex (DLPFC). Both hyper- and hypo-activation in the DLPFC has been reported in patients with attention-deficit/hyperactivity disorder (ADHD) during many different cognitive tasks, but the network-level effects of such aberrant activity remain largely unknown. Using magnetoencephalography (MEG), we examined functional connectivity between regions of the DLPFC and the modality-specific auditory cortices during an auditory attention task in medicated and un-medicated adults with ADHD, and those without ADHD. Participants completed an attention task in two separate sessions (medicated/un-medicated), and each session consisted of two blocks (attend and no-attend). All MEG data were coregistered to structural MRI, corrected for head motion, and projected into source space. Subsequently, we computed the phase coherence (i.e., functional connectivity) between DLPFC regions and the auditory cortices. We found that un-medicated adults with ADHD exhibited greater phase coherence in the beta (14–30 Hz) and gamma frequency (30–56 Hz) range in attend and no-attend conditions compared to controls. Stimulant medication attenuated these differences, but did not fully eliminate them. These results suggest that aberrant bottom-up processing may engulf executive resources in ADHD.
    Psychiatry Research: Neuroimaging 03/2014; 221(3). DOI:10.1016/j.pscychresns.2014.01.002 · 2.42 Impact Factor
  • Source
    • "The current finding of higher reported impulsivity scores which are associated with white matter alterations in MJ smokers may also be related to the crossing of fibers through the genu, connecting the left and right dorsolateral prefrontal cortex (DLPFC), which has strong interconnections to the anterior cingulate cortex (ACC; Pandya and Seltzer 1982; Park et al. 2008). Both the ACC and DLPFC are components of the cingulo-fronto-parietal cognitive attention network, which is implicated in executive control, inhibition, attention, and feedback-based decision making (Bush et al. 2008). Decreased FA in the genu of MJ smokers relative to control participants may therefore alter this network, resulting in the difficulties observed in MJ smokers with impulse control. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Marijuana (MJ) use continues to rise, and as the perceived risk of using MJ approaches an all-time historic low, initiation of MJ use is occurring at even younger ages. As adolescence is a critical period of neuromaturation, teens and emerging adults are at greater risk for experiencing the negative effects of MJ on the brain. In particular, MJ use has been shown to be associated with alterations in frontal white matter microstructure, which may be related to reports of increased levels of impulsivity in this population. The aim of this study was to examine the relationship between age of onset of MJ use, white matter microstructure, and reported impulsivity in chronic, heavy MJ smokers. Twenty-five MJ smokers and 18 healthy controls underwent diffusion tensor imaging and completed the Barratt Impulsiveness Scale. MJ smokers were also divided into early onset (regular use prior to age 16) and late onset (age 16 or later) groups in order to clarify the impact of age of onset of MJ use on these variables. MJ smokers exhibited significantly reduced fractional anisotropy (FA) relative to controls, as well as higher levels of impulsivity. Earlier MJ onset was also associated with lower levels of FA. Interestingly, within the early onset group, higher impulsivity scores were correlated with lower FA, a relationship that was not observed in the late onset smokers. MJ use is associated with white matter development and reported impulsivity, particularly in early onset smokers.
    Psychopharmacology 11/2013; 231(8). DOI:10.1007/s00213-013-3326-z · 3.88 Impact Factor
  • Source
    • "Stoy et al. (2011) examined the effect of MPH treatment during childhood on differences in brain activation during reward processing using a monetary incentive delay task in adult ADHD. With OROS-MPH, although treatment for 6 weeks has been found to increase activity in brain regions related to attention (Bush et al., 2008), the effect of relatively long treatment periods on neural processes for reward has not been investigated yet. Here, we examined whether a 3-month OROS-MPH treatment is associated with stable changes in neural activity related to reward sensitivity in ADHD children and adolescents using a longitudinal evaluation encompassing the pre-to post-treatment period, with a concurrent comparison to normally developing children and adolescents. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention-deficit/hyperactivity disorder (ADHD) is neurobehavioral disorder characterized by inattention, hyperactivity/impulsivity and impaired reward system function, such as delay aversion and low reward sensitivity. The pharmacological treatment for ADHD includes methylphenidate (MPH), or osmotic release oral system-MPH (OROS-MPH), which increases extrasynaptic dopamine and noradrenaline levels by blocking their reuptake. Although previous functional magnetic resonance imaging (fMRI) studies revealed that acute treatment with MPH alters activation of the nucleus accumbens during delay aversion in children and adolescents with ADHD, the effects a relatively long period of OROS-MPH treatment on delay aversion as well as reward sensitivity remain unclear. Thus, we evaluated brain activation with fMRI during a reward sensitivity paradigm that consists of high monetary reward and low monetary reward conditions before and after a 3-month treatment with OROS-MPH in 17 children and adolescents with ADHD (mean age, 13.3 ± 2.2) and 17 age- and sex-matched healthy controls (mean age, 13.0 ± 1.9). We found that before treatment there was decreased activation of the nucleus accumbens and thalamus in patients with ADHD during only the low monetary reward condition, which was improved to same level as those of the healthy controls after the treatment. The observed change in brain activity was associated with improved ADHD symptom scores, which were derived from Japanese versions of the ADHD rating scale-IV. These results suggest that treatment with OROS-MPH for a relatively long period is effective in controlling reward sensitivity in children and adolescents with ADHD.
    Clinical neuroimaging 03/2013; 2(1):366-76. DOI:10.1016/j.nicl.2013.03.004 · 2.53 Impact Factor
Show more


48 Reads
Available from