Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing

Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Journal of Cellular Physiology (Impact Factor: 3.84). 06/2008; 215(3):837-45. DOI: 10.1002/jcp.21368
Source: PubMed


Circulation-derived cells play a crucial role in the healing processes of tissue. In early phases of tendon healing processes, circulation-derived cells temporarily exist in the wounded area to initiate the healing process and decrease in number with time. We assumed that a delay of time-dependent decrease in circulation-derived cells could improve the healing of tendons. In this study, we injected platelet-rich plasma (PRP) containing various kinds of growth factors into the wounded area of the patellar tendon, and compared the effects on activation of circulation-derived cells and enhancement of tendon healing with a control group (no PRP injection). To follow the circulation-derived cells, we used a green fluorescent protein (GFP) chimeric rat expressing GFP in the circulating cells and bone marrow cells. In the PRP group, the numbers of GFP-positive cells and heat-shock protein (HSP47; collagen-specific molecular chaperone)-positive cells were significantly higher than in the control group at 3 and 7 days after injury. At the same time, the immunoreactivity for types I and III collagen was higher in the PRP group than in the control group at early phase of tendon healing. These findings suggest that locally injected PRP is useful as an activator of circulation-derived cells for enhancement of the initial tendon healing process.

Download full-text


Available from: Toru Morihara, Jul 03, 2014
30 Reads
  • Source
    • "Furthermore, platelet concentrates contain many powerful mitogenic and chemotactic growth factors, which regulate key processes involved in tissue repair, including cell proliferation, chemotaxis, migration, cellular differentiation, and extracellular matrix synthesis [10, 24]. PDGF, bFGF, TGFβ, IGF, and EGF are chemotactic for fibroblasts [25, 26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. The purposes of our present study were to evaluate the potential of platelet-rich plasma gel to enhance granulation tissue formation after open abdomen and to examine whether the effect was attributable to stimulating rapid neovascularization. Methods. Twenty-four rats underwent colon ascendens stent peritonitis surgery to induce sepsis, followed by intraperitoneal injection of nitrogen to create intra-abdominal hypertension. Four hours later, laparotomies were performed. The rats were randomized into three groups (n = 8 for each group): control, platelet-poor plasma (PPP), and platelet-rich plasma (PRP) groups. One week after the treatment, granulation tissue formation and angiogenesis were evaluated by histological and laser Doppler analysis. Results. The resultant platelet count in platelet-rich plasma was higher than that of PPP. The concentrations of platelet-derived growth factor BB, transforming growth factor β -1, and vascular endothelial growth factor in PRP were significantly higher when compared with that of PPP. Myofibroblast count, granulation tissue thickness, vessel numbers, and blood perfusion were increased in PRP group, followed by PPP group, with control being the least. Conclusion. Rapidly in situ forming platelet-rich plasma gel promoted remarkable neovascularization and early wound healing after open abdomen and may lead to novel and effective treatments for open abdominal wounds.
    Gastroenterology Research and Practice 12/2013; 2013(6):926764. DOI:10.1155/2013/926764 · 1.75 Impact Factor
  • Source
    • "It is derived from patients’ own blood and mixed with an agent to activate platelet formation. PRP works by increasing the number of platelets, which release growth factors to help healing of a particular area [1]. Oral surgeons have used PRP for many years and it is now being widely used in orthopedic interventions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Platelet-rich plasma (PRP) is an autologous platelet concentrate. It is prepared by separating the platelet fraction of whole blood from patients and mixing it with an agent to activate the platelets. In a clinical setting, PRP may be reapplied to the patient to improve and hasten the healing of tissue. The therapeutic effect is based on the presence of growth factors stored in the platelets. Current evidence in orthopedics shows that PRP applications can be used to accelerate bone and soft tissue regeneration following tendon injuries and arthroplasty. Outcomes include decreased inflammation, reduced blood loss and post-treatment pain relief. Recent shoulder research indicates there is poor vascularization present in the area around tendinopathies and this possibly prevents full healing capacity post surgery (Am J Sports Med36(6):1171-1178, 2008). Although it is becoming popular in other areas of orthopedics there is little evidence regarding the use of PRP for shoulder pathologies. The application of PRP may help to revascularize the area and consequently promote tendon healing. Such evidence highlights an opportunity to explore the efficacy of PRP use during arthroscopic shoulder surgery for rotator cuff pathologies. Methods/design: PARot is a single center, blinded superiority-type randomized controlled trial assessing the clinical outcomes of PRP applications in patients who undergo shoulder surgery for rotator cuff disease. Patients will be randomized to one of the following treatment groups: arthroscopic subacromial decompression surgery or arthroscopic subacromial decompression surgery with application of PRP. Trial registration: Current Controlled Trials: ISRCTN10464365.
    Trials 06/2013; 14(1):167. DOI:10.1186/1745-6215-14-167 · 1.73 Impact Factor
  • Source
    • "In a recent study, the mobilization of circulation-derived cells was enhanced in the area of PRP injection. They also reported an increase in the production of type I collagen and macrophage proliferation at 3 and 7 days [26]. However direct prosurvival effects of PRP have not yet been demonstrated on tenocytes and we have therefore compared PRP to insulin, VEGF and cAMP in treatment of hypoxic human tenocytes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Degenerate shoulder tendons display evidence of hypoxia. However tendons are relatively avascular and not considered to have high oxygen requirements and the vulnerability of tendon cells to hypoxia is unclear. Cultured human tenocytes were exposed to hypoxia and the cellular response detected using QPCR, Western blotting, viability, and ELISA assays. We find that tenocytes respond to hypoxia in vitro by activating classical HIF-1α-driven pathways. Total hypoxia caused significant tenocyte apoptosis. Transcription factors typically involved in hypoxic response, HIF-1α and FOXO3A, were upregulated. Hypoxia caused sustained upregulation of several proapoptotic proteins known to mediate hypoxia-induced apoptosis, such as Bnip3 and Nix, but others were unchanged although they were reportedly hypoxia-sensitive in other cell types. Antiapoptotic proteins Bcl2 and Bcl-xL were unchanged by hypoxia. Normal human tenocytes expressed all isoforms of the hypoxia-induced vascular growth factor VEGF except VEGF-D. Hypoxia markedly upregulated VEGF-A mRNA, followed by increased VEGF protein secretion. However treatment with VEGF did not improve tenocyte survival. As a protective strategy for tenocytes at risk of hypoxic death we added prosurvival growth factors insulin or platelet rich plasma (PRP). Both agents strongly protected tenocytes from hypoxia-induced death over 48 h, suggesting possible efficacy in the acute postrupture tendon or integrating graft.
    12/2012; 2012(1):984950. DOI:10.1155/2012/984950
Show more