Article

A phase I trial of Ad.hIFN-beta gene therapy for glioma.

Department of Neurosurgery, Dardinger Neuro-oncology Center, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio 43210-1240, USA.
Molecular Therapy (Impact Factor: 7.04). 04/2008; 16(3):618-26. DOI: 10.1038/sj.mt.6300396
Source: PubMed

ABSTRACT Interferon-beta (IFN-beta) is a pleiotropic cytokine with antitumoral activity. In an effort to improve the therapeutic index of IFN-beta by providing local, sustained delivery of IFN-beta to gliomas, the safety and biological activity of a human IFN-beta (hIFN-beta)-expressing adenovirus vector (Ad.hIFN-beta) was evaluated in patients with malignant glioma by stereotactic injection, followed 4-8 days later by surgical removal of tumor with additional injections of Ad.hIFN-beta into the tumor bed. Eleven patients received Ad.hIFN-beta in cohorts of 2 x 10(10), 6 x 10(10), or 2 x 10(11) vector particles (vp). The most common adverse events were considered by the investigator as being unrelated to treatment. One patient, who was enrolled in the cohort with the highest dose levels, experienced dose-limiting, treatment-related Grade 4 confusion following the post-operative injection. Ad.hIFN-beta DNA was detected within the tumor, blood, and nasal swabs in a dose-dependent fashion and hIFN-beta protein was detectable within the tumor. At the highest doses tested, a reproducible increase in tumor cell apoptosis in post-treatment versus pre-treatment biopsies with associated tumor necrosis was observed. Direct Ad.hIFN-beta injection into the tumor and the surrounding normal brain areas after surgical removal was feasible and associated with apoptosis induction.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma remains a lethal diagnosis with a 5-year survival rate of less than 10%. (JAMA 352:987-96, 2005) Although immunotherapy-based approaches are capable of inducing detectable immune responses against tumor-specific antigens, improvements in clinical outcomes are modest, in no small part due to tumor-induced immunosuppressive mechanisms that promote immune escape and immuno-resistance. Immunotherapeutic strategies aimed at bolstering the immune response while neutralizing immunosuppression will play a critical role in improving treatment outcomes for glioblastoma patients. In vivo murine models of glioma provide an invaluable resource to achieving that end, and their use is an essential part of the preclinical workup for novel therapeutics that need to be tested in animal models prior to testing experimental therapies in patients. In this article, we review five contemporary immunocompetent mouse models, GL261 (C57BL/6), GL26 (C57BL/6) CT-2A (C57BL/6), SMA-560 (VM/Dk), and 4C8 (B6D2F1), each of which offer a suitable platform for testing novel immunotherapeutic approaches.
    Journal of Translational Medicine 04/2014; 12(1):107. · 3.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. Areas covered: This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. Expert opinion: The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
    Expert opinion on biological therapy 04/2014; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite extensive research, current glioma therapies are still unsatisfactory, and novel approaches are pressingly needed. In recent years, both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment, and the mechanistic background of their cytotoxicity has been unveiled. A growing number of clinical trials have convincingly established viral therapies to be safe in glioma patients, and maximum tolerated doses have generally not been reached. However, evidence for therapeutic benefit has been limited: new generations of therapeutic vectors need to be developed in order to target not only tumor cells but also the complex surrounding microenvironment. Such therapies could also direct long-lasting immune responses toward the tumor while reducing early antiviral reactions. Furthermore, viral delivery methods are to be improved and viral spread within the tumor will have to be enhanced. Here, we will review the outcome of completed glioma virus therapy trials as well as highlight the ongoing clinical activities. On this basis, we will give an overview of the numerous strategies to enhance therapeutic efficacy of new-generation viruses and novel treatment regimens. Finally, we will conclude with approaches that may be crucial to the development of successful glioma therapies in the future.
    Neuro-Oncology 01/2014; · 6.18 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from
Aug 22, 2014