Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
DNA Repair (Impact Factor: 3.36). 03/2008; 7(3):515-22. DOI: 10.1016/j.dnarep.2007.11.014
Source: PubMed

ABSTRACT We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells [H. Nagasawa, Y. Peng, P.F. Wilson, Y.C. Lio, D.J. Chen, J.S. Bedford, J.B. Little, Role of homologous recombination in the alpha-particle-induced bystander effect for sister chromatid exchanges and chromosomal aberrations, Radiat. Res. 164 (2005) 141-147]. In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23 to 0.33SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after alpha-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

1 Follower
  • Source
    • "This variable expression of RIBE could be due to the presence of multiple pathways involved in the various bystander phenomena. Recent studies have shown that the extent of bystander effect varied according to the genetic background of cells [36] [37]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both irradiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations. We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single (3)He(2+) particle traversal to a single cell, are sufficient to induce RIGI. Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors. Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (RIGI, measured as delayed chromosome aberrations). Although this was not highly significant, it was possibly masked by high levels of intra-individual variation. While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes. In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed. We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population. The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 03/2010; 688(1-2):91-4. DOI:10.1016/j.mrfmmm.2010.03.013 · 4.44 Impact Factor
  • Source
    • "Therefore, bystander effects may be important for normal tissue reaction in radiotherapy treatment. Furthermore, DNA repair processes in bystander cells appear to be complex and may be triggered in S-phase when DNA damage interferes with replication fork progression (Burdak-Rothkamm et al., 2007; Nagasawa et al., 2008). The recent observations of the dependency of bystander γH2AX foci induction on ATR function but not on ATM or DNA- PK function (Burdak-Rothkamm et al., 2007) and dependency of bystander cell killing on ATR/ATM function (Burdak-Rothkamm et al., 2008) suggest potential targets for the modulation of bystander DNA damage. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionising radiation plays a key role in therapy due to its ability to directly induce DNA damage, in particular DNA double-strand breaks leading to cell death. Cells have multiple repair pathways which attempt to maintain genomic stability. DNA repair proteins have become key targets for therapy, using small molecule inhibitors, in combination with radiation and or chemotherapeutic agents as a means of enhancing cell killing. Significant advances in our understanding of the response of cells to radiation exposures has come from the observation of non-targeted effects where cells respond via mechanisms other than those which are a direct consequence of energy-dependent DNA damage. Typical of these is bystander signalling where cells respond to the fact that their neighbours have been irradiated. Bystander cells show a DNA damage response which is distinct from directly irradiated cells. In bystander cells, ATM- and Rad3-related (ATR) protein kinase-dependent signalling in response to stalled replication forks is an early event in the DNA damage response. The ATM protein kinase is activated downstream of ATR in bystander cells. This offers the potential for differential approaches for the modulation of bystander and direct effects with repair inhibitors which may impact on the response of tumours and on the protection of normal tissues during radiotherapy.
    European journal of pharmacology 10/2009; 625(1-3):151-5. DOI:10.1016/j.ejphar.2009.09.068 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (< or =30 min) but not late (> or =2 h) time points after exposure. Genotoxin-stimulated SAPK/JNK activation was attenuated in nonproliferating cells, indicating that S phase-dependent mechanisms are involved in signaling to SAPK/JNK. Correspondingly, UV-induced phosphorylation of SAPK/JNK was higher in S-phase cells as compared with G(1)-phase cells. Activation of SAPK/JNK by genotoxins was below detection limit in nonproliferating human peripheral blood lymphocytes, whereas peripheral blood lymphocytes stimulated to proliferation displayed clear SAPK/JNK activation. UV-induced phosphorylation of SAPK/JNK was attenuated in XPC-defective cells, ameliorated in BRCA2 mutated cells and not changed in cells lacking ATM, DNA-PK, CSB, XPA, p53, ERCC1 or PARP as compared with the corresponding wild types. Based on these data, we suggest that DNA replication blockage caused by genotoxin-induced DNA damage contributes to early activation of SAPK/JNK.
    Journal of Molecular Biology 12/2008; 385(5):1409-21. DOI:10.1016/j.jmb.2008.12.015 · 4.33 Impact Factor
Show more