Non-charged thiamine analogs as inhibitors of enzyme transketolase

Array BioPharma Inc., 3200 Walnut Street, Boulder, CO 80301, USA.
Bioorganic & medicinal chemistry letters (Impact Factor: 2.33). 02/2008; 18(2):509-12. DOI: 10.1016/j.bmcl.2007.11.098
Source: PubMed

ABSTRACT Inhibition of the thiamine-utilizing enzyme transketolase (TK) has been linked with diminished tumor cell proliferation. Most thiamine antagonists have a permanent positive charge on the B-ring, and it has been suggested that this charge is required for diphosphorylation by thiamine pyrophosphokinase (TPPK) and binding to TK. We sought to make neutral thiazolium replacements that would be substrates for TPPK, while not necessarily needing thiamine transporters (ThTr1 and ThTr2) for cell penetration. The synthesis, SAR, and structure-based rationale for highly potent non-thiazolium TK antagonists are presented.

Download full-text


Available from: Steven Armen Boyd, Jun 30, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a new target protein for cancer research. However, since the crystal structure of human Transketolase is unknown, no structure-based methods can be used to identify new inhibitors. We performed homology modeling of human Transketolase using the crystal structure of yeast as a template, and then refined the model through molecular dynamics simulations. Based on the resulting structure we propose five critical sites containing arginines (Arg 101, Arg 318, Arg 395, Arg 401 and Arg 474) that contribute to dimer stability or catalytic activity. In addition, an interaction analysis of its cofactor (thiamine pyrophosphate) and a binding site description were carried out, suggesting the substrate channel already identified in yeast Transketolase. A binding free energy calculation of its cofactor was performed to establish the main driving forces of binding. In summary, we describe a reliable model of human Transketolase that can be used in structure-based drug design and in the search for new Transketolase inhibitors that disrupt dimer stability and cover the critical sites found.
    Journal of molecular graphics & modelling 12/2008; 27(6):723-34. DOI:10.1016/j.jmgm.2008.11.005 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of thiamin diphosphate (ThDP) as a cofactor for enzymes has been known for many decades. This minireview covers the progress made in understanding the catalytic mechanism of ThDP-dependent enzymes through the use of ThDP analogues. Many such analogues have been synthesized and have provided information on the functional groups necessary for the binding and catalytic activity of the cofactor. Through these studies, the important role of hydrophobic interactions in stabilizing reaction intermediates in the catalytic cycle has been recognized. Stable analogues of intermediates in the ThDP-catalysed reaction mechanism have also been synthesized and crystallographic studies using these analogues have allowed enzyme structures to be solved that represent snapshots of the reaction in progress. As well as providing mechanistic information about ThDP-dependent enzymes, many analogues are potent inhibitors of these enzymes. The potential of these compounds as therapeutic targets and as important herbicidal agents is discussed. More recently, the way that ThDP regulates the genes for its own biosynthesis through the action of riboswitches has been discovered. This opens a new branch of thiamin research with the potential to provide new therapeutic targets in the fight against infection.
    FEBS Journal 07/2009; 276(11):2905-16. DOI:10.1111/j.1742-4658.2009.07018.x · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of 3-deazathiamine diphosphate (deazaThDP) as a potent inhibitor analog of the cofactor thiamine diphosphate (ThDP) has highlighted the need for an efficient and scalable synthesis of deazaThDP. Such a method would facilitate development of analogs with the ability to inhibit individual ThDP-dependent enzymes selectively. Toward the goal of developing selective inhibitors of the mycobacterial enzyme 2-hydroxy-3-oxoadipate synthase (HOAS), we report an improved synthesis of deazaThDP without use of protecting groups. Tribromo-3-methylthiophene served as a versatile starting material whose selective functionalization permitted access to deazaThDP in five steps, with potential to make other analogs accessible in substantial amounts.
    Bioorganic & medicinal chemistry letters 09/2010; 20(22):6472-4. DOI:10.1016/j.bmcl.2010.09.053 · 2.33 Impact Factor