Adhesions in a murine flexor tendon graft model: Autograft versus allograft reconstruction

The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA.
Journal of Orthopaedic Research (Impact Factor: 2.97). 06/2008; 26(6):824-33. DOI: 10.1002/jor.20531
Source: PubMed

ABSTRACT Reconstruction of flexor tendons often results in adhesions that compromise joint flexion. Little is known about the factors involved in the formation of flexor tendon graft adhesions. In this study, we developed and characterized a novel mouse model of flexor digitorum longus (FDL) tendon reconstruction with live autografts or reconstituted freeze-dried allografts. Grafted tendons were evaluated at multiple time points up to 84 days post-reconstruction. To assess the flexion range of the metatarsophalangeal joint, we developed a quantitative outcome measure proportional to the resistance to tendon gliding due to adhesions, which we termed the Gliding Coefficient. At 14 days post-grafting, the Gliding Coefficient was 29- and 26-fold greater than normal FDL tendon for both autografts and allografts, respectively (p < 0.001), and subsequently doubled for 28-day autografts. Interestingly, there were no significant differences in maximum tensile force or stiffness between live autograft and freeze-dried allograft repairs over time. Histologically, autograft healing was characterized by extensive remodeling and exuberant scarring around both the ends and the body of the graft, whereas allograft scarring was abundant only near the graft-host junctions. Gene expression of GDF-5 and VEGF were significantly increased in 28-day autografts compared to allografts and to normal tendons. These results suggest that the biomechanical advantages for tendon reconstruction using live autografts over devitalized allografts are minimal. This mouse model can be useful in elucidating the molecular mechanisms in tendon repair and can aid in preliminary screening of molecular treatments of flexor tendon adhesions.

Download full-text


Available from: Kjeld Søballe, Sep 15, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to compare two different methods of joining tendons of similar and dissimilar sizes between recipient and donor tendons for flexor tendon grafts. Flexor digitorum profundus (FDP) and peroneus longus (PL) canine tendons were harvested and divided into four groups. The repair technique we compared was a step-cut (SC) suture and a Pulvertaft weave (PW). FDP tendons were significantly larger in diameter than PL tendons (p < 0.05). The volume of the SC repairs using either FDP or PL tendon as a graft was significantly smaller than PW repairs (p < 0.05). The ultimate load to failure and repair stiffness in FDP graft tendons significantly increased compared with the PL graft tendons (p < 0.05). The SC suture can be used as an alternative to the PW, with similar strength and less bulk for repairs using graft tendons of similar diameter. Surgeons should be aware of the effect of graft tendon size and repair method on strength and bulk when performing flexor tendon grafts.
    04/2012; 37(9):848-54. DOI:10.1177/1753193412442460
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flexor tendons (FT) in the hand provide near frictionless gliding to facilitate hand function. Upon injury and surgical repair, satisfactory healing is hampered by fibrous adhesions between the tendon and synovial sheath. In the present study we used antisense oligonucleotides (ASOs), specifically targeted to components of Tgf-β signaling, including Tgf-β1, Smad3 and Ctgf, to test the hypothesis that local delivery of ASOs and suppression of Tgf-β1 signaling would enhance murine FT healing by suppressing adhesion formation while maintaining strength. ASOs were injected in to the FT repair site at 2, 6 and 12 days post-surgery. ASO treatment suppressed target gene expression through 21 days. Treatment with Tgf-β1, Smad3 or Ctgf ASOs resulted in significant improvement in tendon gliding function at 14 and 21 days, relative to control. Consistent with a decrease in adhesions, Col3a1 expression was significantly decreased in Tgf-β1, Smad3 and Ctgf ASO treated tendons relative to control. Smad3 ASO treatment enhanced the max load at failure of healing tendons at 14 days, relative to control. Taken together, these data support the use of ASO treatment to improve FT repair, and suggest that modulation of the Tgf-β1 signaling pathway can reduce adhesions while maintaining the strength of the repair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Journal of Orthopaedic Research 03/2015; 33(6). DOI:10.1002/jor.22890 · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the changes in maximum flexion angle, gliding coefficient, and bowstringing after a combined repair of both flexor tendons with the flexor digitorum superficialis (FDS) rerouted outside the A2 pulley in cadaveric hands. We performed 4 different repairs on cadaveric hands, with each repair tested on 9 unique digits. In total, 12 cadaveric hands and 36 digits were used. The thumb and little finger were removed from each hand and excluded from testing. Group 1 was sham surgery. Group 2 combined flexor digitorum profundus (FDP) and FDS laceration and repair with both slips of the FDS repaired inside the A2 pulley. Group 3 was FDP repair with one slip of the FDS repaired inside A2 and the other slip left unrepaired. Group 4 was FDP repair with both slips of the FDS rerouted and repaired outside the A2 pulley. Maximum flexion angle, gliding coefficient, and bowstringing were measured in simulated active digital motion for each group. Rerouting and repairing the FDS outside the A2 pulley (group 4) significantly lowered gliding coefficient compared with repairs with both slips inside A2, with values similar to sham surgery. We observed no significant differences in maximum flexion angle among the 4 groups. Increased bowstringing was observed with both slips of the FDS repaired and rerouted outside the A2 pulley. In this cadaveric model, repair of both slips of the FDS outside the A2 pulley improved the gliding coefficient relative to repair within the A2 pulley, which suggests decreased resistance to finger flexion. Repair of the FDS outside the A2 pulley led to a slight increase in bowstringing of the FDS tendon. We describe a technique for managing combined laceration of the FDP and FDS tendons that improves gliding function and merits consideration. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
    The Journal Of Hand Surgery 02/2015; 40(4). DOI:10.1016/j.jhsa.2014.12.045 · 1.66 Impact Factor