Endogenous human microRNAs that suppress breast cancer metastasis.

Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Nature (Impact Factor: 42.35). 02/2008; 451(7175):147-52. DOI: 10.1038/nature06487
Source: PubMed

ABSTRACT A search for general regulators of cancer metastasis has yielded a set of microRNAs for which expression is specifically lost as human breast cancer cells develop metastatic potential. Here we show that restoring the expression of these microRNAs in malignant cells suppresses lung and bone metastasis by human cancer cells in vivo. Of these microRNAs, miR-126 restoration reduces overall tumour growth and proliferation, whereas miR-335 inhibits metastatic cell invasion. miR-335 regulates a set of genes whose collective expression in a large cohort of human tumours is associated with risk of distal metastasis. miR-335 suppresses metastasis and migration through targeting of the progenitor cell transcription factor SOX4 and extracellular matrix component tenascin C. Expression of miR-126 and miR-335 is lost in the majority of primary breast tumours from patients who relapse, and the loss of expression of either microRNA is associated with poor distal metastasis-free survival. miR-335 and miR-126 are thus identified as metastasis suppressor microRNAs in human breast cancer.


Available from: Thordur Oskarsson, Mar 14, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNA) are 21-23 nucleotide molecules not translated into proteins that bind and target the 3' untranslated regions of mRNA. These characteristics make them a possible tool for inhibiting protein translation. Different cellular pathways involved in cancer development, such as cellular proliferation, apoptosis, and migration, are regulated by miRNAs. The objective of this review is to discuss various miRNAs involved in breast cancer in detail as well as different therapeutic strategies from the clinic to industry. A comprehensive discussion is provided on various miRNAs involved in breast cancer development, progression, and metastasis as well as the roles, targets, and related therapeutic strategies of different miRNAs associated with breast cancer. MiRNAs known to be clinically useful for the diagnosis and prognosis of breast cancer are also discussed. Different strategies and challenges, including nucleic acid-based (miRNA mimics, antagomiRs, and miRNA sponges) and drug-based (drug resistance, drugs/miRNA interaction, nanodelivery, and sensing systems) approaches to suppress specific oncogenes and/or activate target tumor suppressors are discussed. In contrast to other articles written on the same topic, this review focuses on the therapeutic and clinical value of miRNAs as well as their corresponding targets in order to explore how these strategies can overcome breast cancer, which is the second most frequent type of cancer worldwide. This review focuses on promising and validated miRNAs involved in breast cancer. In particular, two miRNAs, miR-21 and miR-34, are discussed as the most promising targets for RNA-based therapy in non-invasive and invasive breast cancer, respectively. Finally, relevant and commercialized therapeutic strategies are highlighted. Copyright © 2015. Published by Elsevier Ltd.
    Pharmacological Research 05/2015; DOI:10.1016/j.phrs.2015.04.015 · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on our recent microarray analysis, we found that miR-145 was obviously downregulated in nasopharyngeal carcinoma (NPC) tissues. However, little is known about its function and mechanism involving in NPC development and progression. Quantitative RT-PCR was used to detect miR-145 expression in NPC cell lines and clinical samples. Wound healing, Transwell migration and invasion, three-dimension spheroid invasion assays, and lung metastasis model were performed to test the migratory, invasive, and metastatic ability of NPC cells. Luciferase reporter assay, quantitative RT-PCR, and Western blotting were used to verify the target of miR-145. MiR-145 was obviously decreased in NPC cell lines and clinical samples (P<0.01). Ectopic overexpression of miR-145 significantly inhibited the migratory and invasive ability of SUNE-1 and CNE-2 cells. In addition, stably overexpressing of miR-145 in SUNE-1 cells could remarkably restrain the formation of metastatic nodes in the lungs of mice. Furthermore, fascin actin-bundling protein 1 (FSCN1) was verified as a target of miR-145, and silencing FSCN1 with small RNA interfering RNA could suppress NPC cell migration and invasion. Our findings demonstrated that miR-145 function as a tumor suppressor in NPC development and progression via targeting FSCN1, which could sever as a potential novel therapeutic target for patients with NPC.
    PLoS ONE 01/2015; 10(3):e0122228. DOI:10.1371/journal.pone.0122228 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-to-mesenchymal transition (EMT) is a reversible process by which cancer cells can switch from a sessile epithelial phenotype to an invasive mesenchymal state. EMT enables tumor cells to become invasive, intravasate, survive in the circulation, extravasate, and colonize distant sites. Paracrine heterotypic stroma-derived signals as well as paracrine homotypic or autocrine signals can mediate oncogenic EMT and contribute to the acquisition of stem/progenitor cell properties, expansion of cancer stem cells, development of therapy resistance, and often lethal metastatic disease. EMT is regulated by a variety of stimuli that trigger specific intracellular signalling pathways. Altered microRNA (miR) expression and perturbed signalling pathways have been associated with epithelial plasticity, including oncogenic EMT. In this review we analyse and describe the interaction between experimentally validated miRs and their target genes in TGF-β, Notch, and Wnt signalling pathways. Interestingly, in this process, we identified a "signature" of 30 experimentally validated miRs and a cluster of validated target genes that seem to mediate the cross talk between TGF-β, Notch, and Wnt signalling networks during EMT and reinforce their connection to the regulation of epithelial plasticity in health and disease.
    Journal of Oncology 01/2015; 2015:198967. DOI:10.1155/2015/198967