Article

Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma.

Division of Organ Replacement Research, Center for Molecular Medicine, Jichi Medical University, Shimotuke, Tochigi, Japan.
Journal of Investigative Dermatology (Impact Factor: 6.19). 06/2008; 128(6):1506-16. DOI: 10.1038/sj.jid.5701216
Source: PubMed

ABSTRACT With melanoma, as with many other malignancies, aberrant transcriptional repression is a hallmark of refractory cancer. To restore gene expression, use of a histone deacetylase inhibitor (HDACi) is expected to be effective. Our recent DNA micro-array analysis showed that the HDACi depsipeptide (FK228) significantly enhances gp100 antigen expression. Herein, we demonstrate that depsipeptide promotes tumor-specific T-cell-mediated killing of B16/F10 murine melanoma cells. First, by a quantitative assay of caspase-3/7 activity, a sublethal dose of depsipeptide was determined (ED50: 5 nM), in which p21(Waf1/Cip1) and Fas were sufficiently evoked concomitantly with histone H3 acetylation. Second, the sublethal dose of depsipeptide treatment with either a recombinant Fas ligand or tumor-specific T cells synergistically enhanced apoptotic cell death in B16/F10 cells in vitro. Furthermore, we found that depsipeptide increased levels of perforin in T cells. Finally, in vivo metastatic growth of B16/F10 in the lung was significantly inhibited by a combination of depsipeptide treatment and immune cell adoptive transfer from immunized mice using irradiated B16 cells and gp100-specific (Pmel-1) TCR transgenic mice (P<0.05, vs cell transfer alone). Consequently, employment of a transcriptional modulation strategy using HDACis might prove to be a useful pretreatment for human melanoma immunotherapy.

0 Bookmarks
 · 
66 Views

Full-text (2 Sources)

View
7 Downloads
Available from
Jun 10, 2014