The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease.

Parkinson's Disease Research Laboratory, Baylor College of Medicine, Houston, TX 77030, USA.
Brain (Impact Factor: 10.23). 02/2008; 131(Pt 8):1969-78. DOI: 10.1093/brain/awm318
Source: PubMed

ABSTRACT The ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway (ALP) are the two most important mechanisms that normally repair or remove abnormal proteins. Alterations in the function of these systems to degrade misfolded and aggregated proteins are being increasingly recognized as playing a pivotal role in the pathogenesis of many neurodegenerative disorders such as Parkinson's disease. Dysfunction of the UPS has been already strongly implicated in the pathogenesis of this disease and, more recently, growing interest has been shown in identifying the role of ALP in neurodegeneration. Mutations of alpha-synuclein and the increase of intracellular concentrations of non-mutant alpha-synuclein have been associated with Parkinson's disease phenotype. The demonstration that alpha-synuclein is degraded by both proteasome and autophagy indicates a possible linkage between the dysfunction of the UPS or ALP and the occurrence of this disorder. The fact that mutant alpha-synucleins inhibit ALP functioning by tightly binding to the receptor on the lysosomal membrane for autophagy pathway further supports the assumption that impairment of the ALP may be related to the development of Parkinson's disease. In this review, we summarize the recent findings related to this topic and discuss the unique role of the ALP in this neurogenerative disorder and the putative therapeutic potential through ALP enhancement.


Available from: Joseph Jankovic, Mar 29, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the co-chaperone Bcl2-associated athanogene 3 (BAG3) can cause myofibrillar myopathy (MFM), a childhood-onset progressive muscle disease, characterized by the formation of protein aggregates and myofibrillar disintegration. In contrast to other MFM-causing proteins, BAG3 has no direct structural role, but regulates autophagy and the degradation of misfolded proteins. To investigate the mechanism of disease in BAG3-related MFM, we expressed wild-type BAG3 or the dominant MFM-causing BAG3 (BAG3(P209L)) in zebrafish. Expression of the mutant protein results in the formation of aggregates that contain wild-type BAG3. Through the stimulation and inhibition of autophagy, we tested the prevailing hypothesis that impaired autophagic function is responsible for the formation of protein aggregates. Contrary to the existing theory, our studies reveal that inhibition of autophagy is not sufficient to induce protein aggregation. Expression of the mutant protein, however, did not induce myofibrillar disintegration and we therefore examined the effect of knocking down Bag3 function. Loss of Bag3 resulted in myofibrillar disintegration, but not in the formation of protein aggregates. Remarkably, BAG3(P209L) is able to rescue the myofibrillar disintegration phenotype, further demonstrating that its function is not impaired. Together, our knockdown and overexpression experiments identify a mechanism whereby BAG3(P209L) aggregates form, gradually reducing the pool of available BAG3, which eventually results in BAG3 insufficiency and myofibrillar disintegration. This mechanism is consistent with the childhood onset and progressive nature of MFM and suggests that reducing aggregation through enhanced degradation or inhibition of nucleation would be an effective therapy for this disease.
    Acta Neuropathologica 10/2014; DOI:10.1007/s00401-014-1344-5 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.
    Behavioural neurology 01/2015; 2015:1-11. DOI:10.1155/2015/103969 · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although Parkinson's disease is the most common neurodegenerative movement disorder, the mechanisms of pathogenesis remain poorly understood. Recent findings have shown that deregulation of the autophagy-lysosome pathway is involved in the pathogenesis of Parkinson's disease. This review summarizes the most recent findings and discusses the unique role of the autophagy-lysosome pathway in Parkinson's disease to highlight the possibility of Parkinson's disease treatment strategies that incorporate autophagy-lysosome pathway modulation.
    Neural Regeneration Research 01/2012; 7(2):141-145. DOI:10.3969/j.issn.1673-5374.2012.02.011 · 0.23 Impact Factor