In Vitro Production of Panton-Valentine Leukocidin among Strains of Methicillin-Resistant Staphylococcus aureus Causing Diverse Infections

Veterans Affairs Medical Center, Boise, Idaho 83702, USA.
Clinical Infectious Diseases (Impact Factor: 8.89). 01/2008; 45(12):1550-8. DOI: 10.1086/523581
Source: PubMed


Community-acquired methicillin-resistant Staphylococcus aureus strains have recently been associated with severe necrotizing infections. Greater than 75% of these strains carry the genes for Panton-Valentine leukocidin (PVL), suggesting that this toxin may mediate these severe infections. However, to date, studies have not provided evidence of toxin production.
Twenty-nine community-acquired methicillin-resistant Staphylococcus aureus and 2 community-acquired methicillin-susceptible S. aureus strains were collected from patients with infections of varying severity. Strains were analyzed for the presence of lukF-PV and SCCmecA type. PVL production in lukF-PV gene-positive strains was measured by ELISA, and the amount produced was analyzed relative to severity of infection.
Only 2 of the 31 strains tested, 1 methicillin-resistant Staphylococcus aureus abscess isolate and 1 nasal carriage methicillin-susceptible S. aureus isolate, were lukF-PV negative. All methicillin-resistant Staphylococcus aureus strains were SCCmec type IV. PVL was produced by all strains harboring lukF-PV, although a marked strain-to-strain variation was observed. Twenty-six (90%) of 29 strains produced 50-350 ng/mL of PVL; the remaining strains produced PVL in excess of 500 ng/mL. The quantity of PVL produced in vitro did not correlate with severity of infection.
Although PVL likely plays an important role in the pathogenesis of these infections, its mere presence is not solely responsible for the increased severity. Factors that up-regulate toxin synthesis in vivo could contribute to more-severe disease and worse outcomes in patients with community-acquired methicillin-resistant Staphylococcus aureus infection.

1 Read
  • Source
    • "We confirmed that MSSA68111 produced both TSST-1 and PVL. PVL production by MSSA68111 was comparable to other S. aureus clinical isolates we have tested [16], however the level of TSST-1 was low. The relatively low level of TSST-1 in MSSA68111 could not be explained by a non-functional Agr/RNAIII system since both alpha- and delta-hemolysins were produced. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008, an unusual strain of methicillin-sensitive Staphylococcus aureus (MSSA68111), producing both Panton-Valentine leukocidin (PVL) and toxic shock syndrome toxin-1 (TSST-1), was isolated from a fatal case of necrotizing pneumonia. Because PVL/TSST-1 co-production in S. aureus is rare, we characterized the molecular organization of these toxin genes in strain 68111. MSSA68111 carries the PVL genes within a novel temperate prophage we call ФPVLv68111 that is most similar, though not identical, to phage ФPVL--a phage type that is relatively rare worldwide. The TSST-1 gene (tst) in MSSA68111 is carried on a unique staphylococcal pathogenicity island (SaPI) we call SaPI68111. Features of SaPI68111 suggest it likely arose through multiple major recombination events with other known SaPIs. Both ФPVLv68111 and SaPI68111 are fully mobilizable and therefore transmissible to other strains. Taken together, these findings suggest that hypervirulent S. aureus have the potential to emerge worldwide.
    PLoS ONE 11/2011; 6(11):e27246. DOI:10.1371/journal.pone.0027246 · 3.23 Impact Factor
  • Source
    • "Classical approaches for recognising PVL toxin are generally based on the immunological properties of the toxin, such as enzyme-linked immunosorbent assay (ELISA) [5] and latex agglutination [6], or on polymerase chain reaction (PCR)-based methods [7]. These assays are costly and time-consuming methods. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxin-producing gram-positive bacteria are responsible for emerging and life-threatening infections in humans worldwide. Both rapid toxin detection and adapted therapy are essential to limit the morbidity due to such toxins, especially staphylococcal Panton-Valentine leukocidin (PVL). Here we describe the use of a mass spectrometry profile generated by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) followed by ClinProTools 2.0 software analysis to find a reproducible model able to identify PVL in Staphylococcus aureus strains. Eighty-one S. aureus strains were used and tested for the presence of PVL, toxic shock syndrome toxin (TSST-1) and mecA genes. The peak at 4448 mass-to-charge ratio (m/z) was the most relevant peak to differentiate between PVL-producing and non-PVL-producing S. aureus. A model using only this peak had an overall recognition capability of 100% and an overall cross-validation of 77.07%. Prospective evaluation of the model allowed two cases of PVL-producing strains to be detected within a few minutes during the time of care and before polymerase chain reaction (PCR) results. Our study represents a proof of concept for the use of such rapid technology as a point-of-care method to identify potential lethal toxin quickly. We believe that such a rapid method will be timely to help change the therapeutic strategy and could be used in the future for other pathogens and infectious diseases.
    International journal of antimicrobial agents 05/2009; 34(5):467-70. DOI:10.1016/j.ijantimicag.2009.03.017 · 4.30 Impact Factor
  • Source
    • "The mere presence of a toxin gene does not mean that the protein will be expressed and if it is, toxin levels could widely from strain to strain. In fact, the quantity of Panton-Valentine Leukocidin (PVL) produced in vitro varies up to 10-fold among MRSA strains [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus (S. aureus) is an important pathogen associated with both nosocomial and community-acquired infections and its pathogenicity is attributed to its potential to produce virulence factors. Since the amount of toxin produced is related to virulence, evaluating toxin production should be useful for controlling S. aureus infection. We previously found that some strains produce relatively large amounts of TSST-1; however, no reports have described the amount of TSST-1 produced by clinical isolates. Amounts of TSST-1 produced by clinical methicillin resistant S. aureus (MRSA) isolates were measured by Western blotting. We determined their accessory gene regulator (agr) class by PCR and investigated whether TSST-1 production correlates with variations in the class and structure of the agr. We found that 75% of surveyed MRSA isolates (n = 152) possessed the tst gene and that 96.7% belonged to agr class 2. The concentrations of TSST-1 secreted into culture supernatants by 34 strains measured by Western blotting differed 170-fold. Sequencing the entire agr locus (n = 9) revealed that some had allelic variations regardless of the amount of TSST-1 produced whereas sequencing the sar, sigma factor B and the tst promoter region revealed no significant changes. The amounts of TSST-1 produced by clinical MRSA isolates varied. The present results suggest that TSST-1 production is not directly associated with the agr structure, but is instead controlled by unknown transcriptional/translational regulatory systems, or synthesized by multiple regulatory mechanisms that are interlinked in a complex manner.
    BMC Microbiology 04/2009; 9:52. DOI:10.1186/1471-2180-9-52 · 2.73 Impact Factor
Show more