Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility.

Bioinformatics and Biostatistics Unit, and Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain.
BMC Genomics (Impact Factor: 4.4). 02/2008; 9:12. DOI: 10.1186/1471-2164-9-12
Source: PubMed

ABSTRACT Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally.
This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC.
This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent technological advancements in gene expression analysis have led to the discovery of a promising new group of prostate cancer (PCa) biomarkers that have the potential to influence diagnosis and the prediction of disease severity. The accumulation of deleterious changes in gene expression is a fundamental mechanism of prostate carcinogenesis. Aberrant gene expression can arise from changes in epigenetic regulation or mutation in the genome affecting either key regulatory elements or gene sequences themselves. At the epigenetic level, a myriad of abnormal histone modifications and changes in DNA methylation are found in PCa patients. In addition, many mutations in the genome have been associated with higher PCa risk. Finally, over- or underexpression of key genes involved in cell cycle regulation, apoptosis, cell adhesion and regulation of transcription has been observed. An interesting group of biomarkers are emerging from these studies which may prove more predictive than the standard prostate specific antigen (PSA) serum test. In this review, we discuss recent results in the field of gene expression analysis in PCa including the most promising biomarkers in the areas of epigenetics, genomics and the transcriptome, some of which are currently under investigation as clinical tests for early detection and better prognostic prediction of PCa.
    American Journal of Cancer Research 01/2012; 2(6):620-57. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The onset and progression of breast cancer (BC) is influenced by many factors, including the single nucleotide polymorphism (SNP) rs13281615 at 8q24. However, studies of the potential association between rs13281615 at 8q24 and risk of BC have given inconsistent results. We performed a meta-analysis to address this controversy. PubMed, EMBASE and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. Two curators independently extracted data, and odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated to assess the strength of the association between rs13281615 at 8q24 and risk of BC. Fourteen studies are included in the meta-analysis, involving 44,283 cases (5,170 Chinese and 39,113 mixed) and 55,756 controls (5,589 Chinese and 50,167 mixed). The GG and G-allele genotypes of rs13281615 at 8q24 are significantly associated with increased risk of BC (GG vs. AG+AA, OR 1.13, 95% CI 1.08-1.19, P<0.001; G-allele vs. A-allele, OR 1.10, 95% CI 1.06-1.14, P<0.001; GG vs. AA, OR 1.20, 95% CI 1.12-1.29, P<0.001). Conversely, the AA genotype is significantly associated with decreased risk of BC (AA vs. AG+GG, OR 0.89, 95% CI 0.84-0.93, P<0.001). G-allele genotypes of rs13281615 at 8q24 polymorphism are a risk factor for developing BC, while the AA genotype is a protective factor. Further large and well-designed studies are required to confirm this conclusion.
    PLoS ONE 01/2013; 8(4):e60108. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: c-Myc oncoprotein is overexpressed in most human cancers and regulates different genes and pathways in different cell types. E-cadherin expression is repressed by MYC through a post-transcriptional mechanism, but the exact mechanism remains elusive. Since E-cadherin is a direct target of miR-9 and miR-9 can be activated by MYC and MYCN, this suggests that c-Myc negatively modulates E-cadherin through a microRNA pathway. We have established a c-Myc-inducible expression system in which the protein level and transcriptional activity of c-Myc is significantly upregulated upon doxycycline induction. Overexpressed c-Myc led to an EMT-like conversion in the T-REx-293 cells and resulted in a significant decrease in E-cadherin and an increase in Vimentin. Stem-loop RT-PCR showed elevated expression of miR-9 when c-Myc was induced to be overexpressed. Regarding the relationship of c-Myc, miR-9 and E-cadherin, the expression of miR-9 was curtailed by using antagomir-9 in induced overexpressing c-Myc. Restoration of E-cadherin expression became much stronger in the presence of c-Myc. Thus c-Myc represses E-cadherin at the post-transcriptional level through miR-9.
    Cell Biology International 01/2013; · 1.64 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014