Article

Molecular characterization of the Salmonella enterica serovar Typhi Vi-typing bacteriophage E1.

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
Journal of bacteriology (Impact Factor: 2.69). 05/2008; 190(7):2580-7. DOI: 10.1128/JB.01654-07
Source: PubMed

ABSTRACT Some bacteriophages target potentially pathogenic bacteria by exploiting surface-associated virulence factors as receptors. For example, phage have been identified that exhibit specificity for Vi capsule producing Salmonella enterica serovar Typhi. Here we have characterized the Vi-associated E1-typing bacteriophage using a number of molecular approaches. The absolute requirement for Vi capsule expression for infectivity was demonstrated using different Vi-negative S. enterica derivatives. The phage particles were shown to have an icosahedral head and a long noncontractile tail structure. The genome is 45,362 bp in length with defined capsid and tail regions that exhibit significant homology to the S. enterica transducing phage ES18. Mass spectrometry was used to confirm the presence of a number of hypothetical proteins in the Vi phage E1 particle and demonstrate that a number of phage proteins are modified posttranslationally. The genome of the Vi phage E1 is significantly related to other bacteriophages belonging to the same serovar Typhi phage-typing set, and we demonstrate a role for phage DNA modification in determining host specificity.

0 Followers
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.
    Virology 09/2014; 468-470C:421-443. DOI:10.1016/j.virol.2014.08.024 · 3.28 Impact Factor
  • Chapter: Typhoid
    The Prokaryotes - Human Microbiology, 4th edited by Eugene Rosenberg, 01/2013: chapter 17; Springer Berlin Heidelberg., ISBN: 978-3-642-30143-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invasive non-typhoidal Salmonella (iNTS) are an important cause of septicemia in children under the age of five years in sub-Saharan Africa. A novel genotype of Salmonella enterica subsp. enterica serovar Typhimurium (multi-locus sequence type [ST] 313) circulating in this geographic region is genetically different to from S. Typhimurium ST19 strains that are common throughout the rest of the world. S. Typhimurium ST313 strains have acquired pseudogenes and genetic deletions and appear to be evolving to become more like the typhoidal serovars S. Typhi and S. Paratyphi A. Epidemiological and clinical data show that S. Typhimurium ST313 strains are clinically associated with invasive systemic disease (bacteremia, septicemia, meningitis) rather than with gastroenteritis. The current work summarizes investigations of the broad hypothesis that S. Typhimurium ST313 isolates from Mali, West Africa, will behave differently from ST19 isolates in various in vitro assays. Here, we show that strains of the ST313 genotype are phagocytosed more efficiently and are highly resistant to killing by macrophage cell lines and primary mouse and human macrophages compared to ST19 strains. S. Typhimurium ST313 strains survived and replicated within different macrophages. Infection of macrophages with S. Typhimurium ST19 strains resulted in increased apoptosis and higher production of proinflammatory cytokines, as measured by gene expression and protein production, compared to S. Typhimurium ST313 strains. This difference in proinflammatory cytokine production and cell death between S. Typhimurium ST19 and ST313 strains could be explained, in part, by an increased production of flagellin by ST19 strains. These observations provide further evidence that S. Typhimurium ST313 strains are phenotypically different to ST19 strains and instead share similar pathogenic characteristics with typhoidal Salmonella serovars.
    PLoS Neglected Tropical Diseases 01/2015; 9(1):e3394. DOI:10.1371/journal.pntd.0003394 · 4.49 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
Jun 2, 2014