Functional imaging of cognition in Alzheimer's disease using positron emission tomography.

Cyclotron Research Centre, University of Liège, B30 Sart Tilman, 4000 Liège, Belgium.
Neuropsychologia (Impact Factor: 3.45). 02/2008; 46(6):1613-23. DOI: 10.1016/j.neuropsychologia.2007.11.022
Source: PubMed

ABSTRACT Positron emission tomography in Alzheimer's disease (AD) demonstrates a metabolic decrease, predominantly in associative posterior cortices (comprising the posterior cingulate cortex), and also involving medial temporal structures and frontal regions at a lesser degree. The level of activity in this wide network is roughly correlated with dementia severity, but several confounds (such as age, education or subcortical ischemic lesions) may influence the brain-behaviour relationship. Univariate analyses allow one to segregate brain regions that are particularly closely related to specific neuropsychological performances. For example, a relationship was established between the activity in lateral associative cortices and semantic performance in AD. The role of semantic capacities (subserved by temporal or parietal regions) in episodic memory tasks was also emphasized. The residual activity in medial temporal structures was related to episodic memory abilities, as measured by free recall performance, cued recall ability and recognition accuracy. More generally, AD patients' performance on episodic memory tasks was correlated with the metabolism in several structures of Papez's circuit (including the medial temporal and posterior cingulate regions). Multivariate analyses should provide complementary information on impaired metabolic covariance in functional networks of brain regions and the consequences for AD patients' cognitive performance. More longitudinal studies are being conducted that should tell us more about the prognostic value of initial metabolic impairment and the neural correlates of progressive deterioration of cognitive performance in AD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early-onset Alzheimer's disease (AD) patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20 early-onset (<65 years old), 28 late-onset (≥65 years old) AD patients and 15 "young" (<65 years old) and 31 "old" (≥65 years old) age-matched controls were available. Resting-state network-masks were used to create subject-specific maps. Group differences were examined using a non-parametric permutation test, accounting for gray-matter. Performance on five cognitive domains were used in a correlation analysis with functional connectivity in AD patients. Functional connectivity was not different in any of the RSNs when comparing the two control groups (young vs. old controls), which implies that there is no general effect of aging on functional connectivity. Functional connectivity in early-onset AD was lower in all networks compared to age-matched controls, where late-onset AD showed lower functional connectivity in the default-mode network. Functional connectivity was lower in early-onset compared to late-onset AD in auditory-, sensory-motor, dorsal-visual systems and the default mode network. Across patients, an association of functional connectivity of the default mode network was found with visuoconstruction. Functional connectivity of the right dorsal visual system was associated with attention across patients. In late-onset AD patients alone, higher functional connectivity of the sensory-motor system was associated with poorer memory performance. Functional brain organization was more widely disrupted in early-onset AD when compared to late-onset AD. This could possibly explain different clinical profiles, although more research into the relationship of functional connectivity and cognitive performance is needed.
    PLoS ONE 07/2014; 9(7):e102995. DOI:10.1371/journal.pone.0102995 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conflicting evidence exists regarding the integrity of episodic memory in the behavioral variant of frontotemporal dementia (bvFTD). Recent converging evidence suggests that episodic memory in progressive cases of bvFTD is compromised to the same extent as in Alzheimer's disease (AD). The underlying neural substrates of these episodic memory deficits, however, likely differ contingent on dementia type. In this study we sought to elucidate the neural substrates of episodic memory performance, across recall and recognition tasks, in both patient groups using voxel-based morphometry (VBM) analyses. We predicted that episodic memory dysfunction would be apparent in both patient groups but would relate to divergent patterns of neural atrophy specific to each dementia type. We assessed episodic memory, across verbal and visual domains, in 19 bvFTD, 18 AD patients, and 19 age- and education-matched controls. Behaviorally, patient groups were indistinguishable for immediate and delayed recall, across verbal and visual domains. Whole-brain VBM analyses revealed regions commonly implicated in episodic retrieval across groups, namely the right temporal pole, right frontal lobe, left paracingulate gyrus, and right anterior hippocampus. Divergent neural networks specific to each group were also identified. Whereas a widespread network including posterior regions such as the posterior cingulate cortex, parietal and occipital cortices was exclusively implicated in AD, the frontal and anterior temporal lobes underpinned the episodic memory deficits in bvFTD. Our results point to distinct neural changes underlying episodic memory decline specific to each dementia syndrome. Hum Brain Mapp, 2013. © 201 Wiley Periodicals, Inc.
    Human Brain Mapping 04/2014; 35(4). DOI:10.1002/hbm.22263 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Executive functioning (EF) is an important cognitive domain that is negatively affected in a number of neuropsychiatric conditions. Neuroimaging methods have led to insights into the anatomical and functional nature of EF. The authors conducted a systematic review of the recent cognitive and neuroimaging literature to investigate how the neuroimaging correlates of EF compare between different diagnostic groups. The authors found that the frontal, parietal, and cerebellar lobes were most frequently associated with EF when comparing results from different clinical populations; the occipital lobe was not correlated with EF in any group. These findings suggest that individual disease processes affect circuits within an identifiable distributed network rather than isolated regions.
    The Journal of neuropsychiatry and clinical neurosciences 04/2014; 26(2):114-25. DOI:10.1176/appi.neuropsych.12070176 · 2.77 Impact Factor