Experimental validation of circumferential, longitudinal, and radial 2-dimensional strain during dobutamine stress echocardiography in ischemic conditions.

INSERM U828 and IFR4, University of Bordeaux 2, Bordeaux, France.
Journal of the American College of Cardiology (Impact Factor: 14.09). 01/2008; 51(2):149-57. DOI: 10.1016/j.jacc.2007.07.088
Source: PubMed

ABSTRACT The aim of this study was to assess and validate 2-dimensional (2D) strain for the detection of ischemia during dobutamine stress echocardiography (DSE).
Evaluation of abnormalities of left ventricular (LV) function from wall thickening during DSE is unsatisfactory and requires a high level of expertise.
In 10 open-chest anesthetized pigs, myocardial deformation was studied before and during dobutamine infusion, under control and ischemic conditions produced by various degrees of coronary artery constriction: 2 of nonflow-limiting stenoses (NFLS) of increasing severity reducing left anterior descending artery hyperemic flow by 40% and 70% and 2 flow-limiting stenoses (FLS) reducing resting coronary flow by 25% and 50%. Agreement between 2D strain echocardiography and sonomicrometry (reference method) was evaluated by linear regression and Bland-Altman analysis.
Good correlation and agreement were observed between 2-dimensional strain and sonomicrometry at rest and during dobutamine infusion; longitudinal strain: r = 0.77, p < 0.001 and r = 0.80, p < 0.001; radial strain: r = 0.57, p < 0.05 and r = 0.63, p < 0.05; and circumferential strain: r = 0.74, p < 0.001 and r = 0.58, p < 0.001. Circumferential and longitudinal strains in the risk area were significantly decreased at rest in the presence of FLS and during dobutamine infusion in the presence of NFLS. By contrast, radial strain was significantly decreased in the presence of severe FLS only during dobutamine infusion.
The 2D strain provides accurate assessment of LV regional function. Evaluation of circumferential and longitudinal strains during DSE has real potential for quantitative evaluation of LV deformation in the routine assessment of ischemia.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 2D speckle tracking echocardiography allows for assessment of left ventricular (LV) torsional deformation as a composite function of the radial, longitudinal and circumferential fibres. We test the hypothesis that post-exercise LV torsional dynamics are more sensitive markers for myocardial dysfunction than resting measures, and better predictors for exercise capacity compared to post-exercise LV diastolic filling pressure (E/e'). We studied 88 patients referred for stress echocardiogram. Treadmill exercise was performed using Bruce protocol, and echo images were acquired using GE Vivid 7. LV rotational dynamics were analysed by speckle tracking method using the GE ECHOPAC software. Tertiles were defined according to exercise capacity measured by the achieved metabolic equivalents (METS) adjusted for age and gender. Comparison was made between LV torsional dynamics and E/e' to correlate with METS to predict exercise capacity. Mean age of the study population was 58 years, 48% females. Patients with systolic dysfunction or evidence of ischaemia were excluded from the analysis. No significant correlation was found between METS and LV torsion measures at rest. There was statistically significant correlation between METS and post-exercise LV torsion (r=0.34, p=0.001), twist velocity increase (r=0.27, p=0.01), and incremental change in torsion (r=0.22, p<0.05). In addition, a correlation was also shown between post-exercise E/e' and METS (r=-0.33, p=0.002). Post-exercise LV torsional dynamics correlate with exercise capacity and may be a useful tool for assessing LV myocardial function in subjects with normal LVEF.
    Cardiovascular Ultrasound 02/2014; 12(1):8. · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation that reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis by using transthoracic echocardiography are (mean ± SD) -19.7% ± 0.4%, while radial and circumferential strain are 47.3% ± 1.9% and -23.3% ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages -1.10 ± 0.16 s. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to assess components of myocardial systolic and diastolic function. Myocardial deformation analysis is based on either Doppler or a non-Doppler technique, called speckle-tracking echocardiography. Myocardial deformation analysis provides quantitative measures of global and regional myocardial function for use in the perioperative care of the surgical patient. For example, coronary graft occlusion after coronary artery bypass grafting is detected by an acute reduction in strain in the affected coronary artery territory. In addition, assessment of left ventricular mechanics detects underlying myocardial pathology before abnormalities become apparent on conventional echocardiography. Certainly, patients with aortic regurgitation demonstrate reduced longitudinal strain before reduction in LVEF occurs, which allows detection of subclinical left ventricular dysfunction and predicts increased risk for heart failure and impaired myocardial function after surgical repair. In this review, we describe the principles, techniques, and clinical application of myocardial deformation analysis.
    Anesthesia and analgesia 03/2014; 118(3):525-44. · 3.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study, we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE.Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (∆3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres.ResultsA ∆3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and ∆3DFS abnormality size correlated with PD size (R2 = 0.54). The sensitivity and specificity for ∆3DFS were similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. ∆3DFS correlated significantly with both coronary flow reserve (R2 = 0.71) and PD size (R2 = 0.97), while area strain correlated with PD size only (R2 = 0.67), and other measures were not significantly correlated with flow reserve or PD size.Conclusion Quantitative wall-motion analysis using ∆3DFS is effective for detecting critical stenoses during DSE, performing similar to 3D strain, and provides potentially useful information on the size and location of a perfusion defect.
    Echocardiography 05/2014; · 1.26 Impact Factor

Full-text (2 Sources)

1 Download
Available from
Jul 22, 2014