Mutations in the Insulin Gene Can Cause MODY and Autoantibody-Negative Type 1 Diabetes

Gade Institute, University of Bergen, Norway.
Diabetes (Impact Factor: 8.1). 04/2008; 57(4):1131-5. DOI: 10.2337/db07-1467
Source: PubMed

ABSTRACT Mutations in the insulin (INS) gene can cause neonatal diabetes. We hypothesized that mutations in INS could also cause maturity-onset diabetes of the young (MODY) and autoantibody-negative type 1 diabetes.
We screened INS in 62 probands with MODY, 30 probands with suspected MODY, and 223 subjects from the Norwegian Childhood Diabetes Registry selected on the basis of autoantibody negativity or family history of diabetes.
Among the MODY patients, we identified the INS mutation c.137G>A (R46Q) in a proband, his diabetic father, and a paternal aunt. They were diagnosed with diabetes at 20, 18, and 17 years of age, respectively, and are treated with small doses of insulin or diet only. In type 1 diabetic patients, we found the INS mutation c.163C>T (R55C) in a girl who at 10 years of age presented with ketoacidosis and insulin-dependent, GAD, and insulinoma-associated antigen-2 (IA-2) antibody-negative diabetes. Her mother had a de novo R55C mutation and was diagnosed with ketoacidosis and insulin-dependent diabetes at 13 years of age. Both had residual beta-cell function. The R46Q substitution changes an invariant arginine residue in position B22, which forms a hydrogen bond with the glutamate at A17, stabilizing the insulin molecule. The R55C substitution involves the first of the two arginine residues localized at the site of proteolytic processing between the B-chain and the C-peptide.
Our findings extend the phenotype of INS mutation carriers and suggest that INS screening is warranted not only in neonatal diabetes, but also in MODY and in selected cases of type 1 diabetes.

7 Reads
  • Source
    • "Since INS is mostly expressed in pancreatic β-cells, the affected patients do not show any extrapancreatic features. In addition to causing NDM, INS mutations may present acutely after the first 6 months of age and even beyond the age of one year, when monogenic diabetes becomes exceedingly rare [41]. Furthermore, up to 70% of the mutations are de novo, so that family history of early-onset diabetes is lacking. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade, we have witnessed major advances in the understanding of the molecular basis of neonatal and infancy-onset diabetes. It is now widely accepted that diabetes presenting before 6 months of age is unlikely to be autoimmune type 1 diabetes. The vast majority of such patients will have a monogenic disorder responsible for the disease and, in some of them, also for a number of other associated extrapancreatic clinical features. Reaching a molecular diagnosis will have immediate clinical consequences for about half of affected patients, as identification of a mutation in either of the two genes encoding the ATP-sensitive potassium channel allows switching from insulin injections to oral sulphonylureas. It also facilitates genetic counselling within the affected families and predicts clinical prognosis. Importantly, monogenic diabetes seems not to be limited to the first 6 months but extends to some extent into the second half of the first year of life, when type 1 diabetes is the more common cause of diabetes. From a scientific perspective, the identification of novel genetic aetiologies has provided important new knowledge regarding the development and function of the human pancreas.
    Hormone Research in Paediatrics 09/2013; 80(3):137-146. DOI:10.1159/000354219 · 1.57 Impact Factor
  • Source
    • "Specific heterozygous mutations in the insulin gene cause diabetes in humans and mice1. Insulin gene mutations are a common cause of permanent neonatal diabetes10, and have also been shown to cause MODY102 and type 1b diabetes6. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims/Introduction The human insulin gene/preproinsulin protein mutation C43G disrupts disulfide bond formation and causes diabetes in humans. Previous in vitro studies showed that these mutant proteins are retained in the endoplasmic reticulum (ER), are not secreted and are associated with decreased secretion of wild‐type insulin. The current study extends this work to an in vivo zebrafish model. We hypothesized that C43G‐green fluorescent protein (GFP) would be retained in the ER, disrupt β‐cell function and lead to impaired glucose homeostasis. Materials and Methods Islets from adult transgenic zebrafish expressing GFP‐tagged human proinsulin mutant C43G (C43G‐GFP) or wild‐type human proinsulin (Cpep‐GFP) were analyzed histologically across a range of ages. Blood glucose concentration was determined under fasting conditions and in response to glucose injection. Insulin secretion was assessed by measuring circulating GFP and endogenous C‐peptide levels after glucose injection. Results The majority of β‐cells expressing C43G proinsulin showed excessive accumulation of C43G‐GFP in the ER. Western blotting showed that C43G‐GFP was present only as proinsulin, indicating defective processing. GFP was poorly secreted in C43G mutants compared with controls. Despite these defects, blood glucose homeostasis was normal. Mutant fish maintained β‐cell mass well into maturity and secreted endogenous C‐peptide. Conclusions In this model, the C43G proinsulin mutation does not impair glucose homeostasis or cause significant loss of β‐cell mass. This model might be useful for identifying potential therapeutic targets for proper trafficking of intracellular insulin or for maintenance of β‐cell mass in early‐stage diabetic patients.
    03/2013; 4(2):157-67. DOI:10.1111/jdi.12015
  • Source
    • "Most of the probands were diagnosed before the age of six months, but few of them were diagnosed between six months to one year of age; in addition, one father was diagnosed at the age of 30 years with mild type 2 diabetes. This study has been followed by other papers confirming heterogeneity of diabetes presentation with age of onset varying from 0 to 20 years of age [4] [5] [7] [8]. Colombo et al. compared clinical findings of patients with PNDM due to INS or KCNJ11 mutations and found that detectable or high C-peptide level, near-normal birth weights, and older age at onset of disease were recurring features of patients with INS mutations as compared to patients carrying a KCNJ11 mutation [7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim. The objective of this study was to describe the clinical characteristics of two siblings and their father carrying a C95Y mutation in the insulin (INS) gene. Methods/Results. A Danish patient, his sister, and his father were identified to carry the C95Y mutation in the preproinsulin molecule causing permanent neonatal diabetes. All three were diagnosed before 29 weeks of age, were born at term with near-normal birth weight, and were negative for GAD, ICA, IA-2, and IAA autoantibodies. The daily insulin requirement the first six months after diagnosis was <0.5 U kg−1 day−1 for both children. The father, insulin treated for over 40 years, has bilateral preproliferative retinopathy. Conclusions. These three cases further confirm the essential features of diabetes caused by INS mutations with proteotoxic effect. We conclude that patients with similar features must be investigated for mutations of INS gene.
    06/2011; 2011:258978. DOI:10.1155/2011/258978
Show more