Liver X receptor alpha is a transcriptional repressor of the uncoupling protein 1 gene and the brown fat phenotype.

The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 05/2008; 28(7):2187-200. DOI: 10.1128/MCB.01479-07
Source: PubMed

ABSTRACT The adipocyte integrates crucial information about metabolic needs in order to balance energy intake, storage, and expenditure. Whereas white adipose tissue stores energy, brown adipose tissue is a major site of energy dissipation through adaptive thermogenesis mediated by uncoupling protein 1 (UCP1) in mammals. In both white and brown adipose tissue, nuclear receptors and their coregulators, such as peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgamma coactivator 1alpha (PGC-1alpha), play key roles in regulating their development and metabolic functions. Here we show the unexpected role of liver X receptor alpha (LXRalpha) as a direct transcriptional inhibitor of beta-adrenergic receptor-mediated, cyclic AMP-dependent Ucp1 gene expression through its binding to the critical enhancer region of the Ucp1 promoter. The mechanism of inhibition involves the differential recruitment of the corepressor RIP140 to an LXRalpha binding site that overlaps with the PPARgamma/PGC-1alpha response element, resulting in the dismissal of PPARgamma. The ability of LXRalpha to dampen energy expenditure in this way provides another mechanism for maintaining a balance between energy storage and utilization.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To understand the contribution of adipose tissue fatty acid oxidation to whole-body metabolism, we generated mice with an adipose-specific knockout of carnitine palmitoyltransferase 2 (CPT2(A-/-)), an obligate step in mitochondrial long-chain fatty acid oxidation. CPT2(A-/-) mice became hypothermic after an acute cold challenge, and CPT2(A-/-) brown adipose tissue (BAT) failed to upregulate thermogenic genes in response to agonist-induced stimulation. The adipose-specific loss of CPT2 resulted in diet-dependent changes in adiposity but did not result in changes in body weight on low- or high-fat diets. Additionally, CPT2(A-/-) mice had suppressed high-fat diet-induced oxidative stress and inflammation in visceral white adipose tissue (WAT); however, high-fat diet-induced glucose intolerance was not improved. These data show that fatty acid oxidation is required for cold-induced thermogenesis in BAT and high-fat diet-induced oxidative stress and inflammation in WAT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 01/2015; 10(2). DOI:10.1016/j.celrep.2014.12.023 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPAR γ , C/EBP α , CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1 α , and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:971890. DOI:10.1155/2014/971890 · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. J. Cell. Physiol. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 12/2014; 229(12). DOI:10.1002/jcp.24664 · 3.87 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014