Nanotemplate-engineered nanoparticles containing gadolinium for magnetic resonance imaging of tumors.

Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082, USA.
Investigative Radiology (Impact Factor: 4.45). 03/2008; 43(2):129-40. DOI: 10.1097/RLI.0b013e31815878dd
Source: PubMed

ABSTRACT To design nanoparticles containing accessible gadolinium atoms (Gd-NPs) as a contrast agent for magnetic resonance imaging of tumors.
Nanoparticles containing phospholipid-chelates (phosphoethanolamine diethylenetriaminepentaacetate) and DSPE-PEG (MW5000) were prepared from Brij 78 and stearyl alcohol using the nanotemplate engineering approach. After addition of GdCl3, the presence of gadolinium on the surface of nanoparticles was quantified using inductively coupled plasma atomic emission spectroscopy. The in vitro relaxivities of the Gd-NPs in phosphate buffered saline were assessed at 4.7 T. The conditional binding constants of nanoparticle formulations were determined spectrophotometrically by competitive titration. Transmetallation kinetics of Gd from nanoparticles with Cu2+ and Zn2+ as the competing ions was measured in acetate buffer. The biodistribution profiles, pharmacokinetics, and contrast enhancement in tumor region was studied after administration of Gd-NPs to nude mice bearing A549 lung carcinoma xenografts.
Gd-NPs with an average diameter of 138 nm possessing surface chelating functions were prepared from GRAS (generally regarded as safe) materials. The longitudinal relaxivity (r1) and transverse relaxivity (r2) of Gd-NPs in 10% fetal bovine serum at 4.7 T were 7.1 (+/-0.2) and 13.0 (+/-0.7) 1/mM/s, respectively. These pegylated Gd-NPs had enhanced relaxivities and exhibited particle size stability, sufficient binding affinity, and kinetic inertness under physiologic conditions. The contrast enhancement in tumors was demonstrated 40, 120, and 360 minutes after intravenous injection of Gd-NPs at a dose of 0.1 mmol Gd/kg. The Gd plasma concentration of Gd-NPs over a period of 24 hours fit a two-compartmental model with Cl sys = 0.89 mL/h and MRT = 5.93 h. The amount of Gd that accumulated in the tumor region was consistent with the estimated value obtained by T1 measurements using MR imaging.
Pegylated nanoparticles composed of biocompatible, biodegradable materials and possessing accessible Gd ions on their surface induce relaxivities in the bulk water signal and accumulated sufficiently in tumors, demonstrating their utility as potential magnetic resonance imaging tumor contrast enhancement agents.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Current advances in magnetic resonance, as a diagnostic modality, are discussed in the context of publications from Investigative Radiology during 2007 and 2008. The articles relating to this topic, published during the past 2 years, are reviewed by anatomic region. The discussion concludes with a consideration of magnetic resonance contrast media, focusing on studies published in the journal, and examining in particular the potential impact of nephrogenic systemic fibrosis.
    Investigative radiology 01/2009; 43(12):893-8. DOI:10.1097/RLI.0b013e31818e659e · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We are investigating the magnetic resonance imaging characteristics of magnetic nanoparticles (MNPs) that consist of an iron-oxide magnetic core coated with oleic acid (OA), then stabilized with a pluronic or tetronic block copolymer. Since pluronics and tetronics vary structurally, and also in the ratio of hydrophobic (poly[propylene oxide]) and hydrophilic (poly[ethylene oxide]) segments in the polymer chain and in molecular weight, it was hypothesized that their anchoring to the OA coating around the magnetic core could significantly influence the physical properties of MNPs, their interactions with biological environment following intravenous administration, and ability to localize to tumors. The amount of block copolymer associated with MNPs was seen to depend upon their molecular structures and influence the characteristics of MNPs. Pluronic F127-modified MNPs demonstrated sustained and enhanced contrast in the whole tumor, whereas that of Feridex IV was transient and confined to the tumor periphery. In conclusion, our pluronic F127-coated MNPs, which can also be loaded with anticancer agents for drug delivery, can be developed as an effective cancer theranostic agent, i.e. an agent with combined drug delivery and imaging properties.
    Biomaterials 09/2009; 30(35):6748-56. DOI:10.1016/j.biomaterials.2009.08.042 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance imaging is a noninvasive imaging modality with high spatial and temporal resolution. Contrast agents (CAs) are frequently used to increase the contrast between tissues of interest. To increase the effectiveness of MR agents, small molecule CAs have been attached to macromolecules. We have created a family of biodegradable, macromolecular CAs based on protein polymers, allowing control over the CA properties. The protein polymers are monodisperse, random coil, and contain evenly spaced lysines that serve as reactive sites for Gd(III) chelates. The exact sequence and length of the protein can be specified, enabling controlled variation in lysine spacing and molecular weight. Relaxivity could be modulated by changing protein polymer length and lysine spacing. Relaxivities of up to approximately 14 mM(-1) s(-1) per Gd(III) and approximately 461 mM(-1) s(-1) per conjugate were observed. These CAs are biodegradable by incubation with plasmin, such that they can be easily excreted after use. They do not reduce cell viability, a prerequisite for future in vivo studies. The protein polymer CAs can be customized for different clinical diagnostic applications, including biomaterial tracking, as a balanced agent with high relaxivity and appropriate molar mass.
    Biomacromolecules 06/2010; 11(6):1429-36. DOI:10.1021/bm901378a · 5.79 Impact Factor