Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in Drosophila

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
Development (Impact Factor: 6.27). 03/2008; 135(4):699-705. DOI: 10.1242/dev.015362
Source: PubMed

ABSTRACT Histones are subject to numerous post-translational modifications that correlate with the state of higher-order chromatin structure and gene expression. However, it is not clear whether changes in these epigenetic marks are causative regulatory factors in chromatin structure changes or whether they play a mainly reinforcing or maintenance role. In Drosophila phosphorylation of histone H3S10 in euchromatic chromatin regions by the JIL-1 tandem kinase has been implicated in counteracting heterochromatization and gene silencing. Here we show, using a LacI-tethering system, that JIL-1 mediated ectopic histone H3S10 phosphorylation is sufficient to induce a change in higher-order chromatin structure from a condensed heterochromatin-like state to a more open euchromatic state. This effect was absent when a ;kinase dead' LacI-JIL-1 construct without histone H3S10 phosphorylation activity was expressed. Instead, the 'kinase dead' construct had a dominant-negative effect, leading to a disruption of chromatin structure that was associated with a global repression of histone H3S10 phosphorylation levels. These findings provide direct evidence that the epigenetic histone tail modification of H3S10 phosphorylation at interphase can function as a causative regulator of higher-order chromatin structure in Drosophila in vivo.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drosophila polytene interphase chromosomes provide an ideal test system to study the rules that define the structure of chromatin domains. We established a transgenic condensed chromatin domain cassette for the insertion of large pieces of DNA by site specific recombination. Insertion of this cassette into open chromatin generated a condensed domain, visible as an extra band on polytene chromosomes. Site specific recombination of DNA sequence variants into this ectopic band allowed us to compare their capacity for open chromatin formation by cytogenetic methods. We demonstrate that the 61C7-8 interband DNA maintains its open chromatin conformation and epigenetic state at an ectopic position. By deletion analysis we mapped the sequences essential for open chromatin formation to a 490 bp fragment in the proximal part of the 17 kb interband sequence. This fragment overlaps binding sites of the chromatin protein Chriz, the histone kinase Jil-1 and the boundary element protein CP190. It also overlaps a promoter region that locates in between the Rev1 and Med30 transcription units.
    Journal of Cell Science 03/2014; 127(10). DOI:10.1242/jcs.147546 · 5.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamically controlled posttranslational modifications of nucleosomal histones alter chromatin condensation to regulate transcriptional activation. We report that a nuclear tandem kinase, JIL-1, controls gene expression by activating poly(ADP-ribose) polymerase-1 (PARP-1). JIL-1 phosphorylates the C terminus of the H2Av histone variant, which stimulates PARP-1 enzymatic activity in the surrounding chromatin, leading to further modification of histones and chromatin loosening. The H2Av nucleosome has a higher surface representation of PARP-1 binding patch, consisting of H3 and H4 epitopes. Phosphorylation of H2Av by JIL-1 restructures this surface patch, leading to activation of PARP-1. Exposure of Val61 and Leu23 of the H4 histone is critical for PARP-1 binding on nucleosome and PARP-1 activation following H2Av phosphorylation. We propose that chromatin loosening and associated initiation of gene expression is activated by phosphorylation of H2Av in a nucleosome positioned in promoter regions of PARP-1-dependent genes.
    Molecular cell 02/2014; DOI:10.1016/j.molcel.2014.01.005 · 14.46 Impact Factor