A new phylogenetic group of Propionibacterium acnes

School of Medicine and Dentistry, Queen's University, Belfast BT12 6BN, UK.
Journal of Medical Microbiology (Impact Factor: 2.27). 03/2008; 57(Pt 2):218-24. DOI: 10.1099/jmm.0.47489-0
Source: PubMed

ABSTRACT Immunofluorescence microscopy-based identification of presumptive Propionibacterium acnes isolates, using the P. acnes-specific mAb QUBPa3, revealed five organisms with an atypical cellular morphology. Unlike the coryneform morphology seen with P. acnes types I and II, these isolates exhibited long slender filaments (which formed large tangled aggregates) not previously described in P. acnes. No reaction with mAbs that label P. acnes types IA (QUBPa1) and II (QUBPa2) was observed. Nucleotide sequencing of the 16S rRNA gene (1484 bp) revealed the isolates to have between 99.8 and 99.9 % identity to the 16S rRNA gene of the P. acnes type IA, IB and II strains NCTC 737, KPA171202 and NCTC 10390, respectively. Analysis of the recA housekeeping gene (1047 bp) did reveal, however, a greater number of conserved nucleotide polymorphisms between the sequences from these isolates and those from NCTC 737 (98.9 % identity), KPA171202 (98.9 % identity) and NCTC 10390 (99.1 % identity). Phylogenetic investigations demonstrated that the isolates belong to a novel recA cluster or lineage distinct from P. acnes types I and II. We now propose this new grouping as P. acnes type III. The prevalence and clinical importance of this novel recA lineage amongst isolates of P. acnes remains to be determined.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acne vulgaris is a very common disease of the pilosebaceous unit of the human skin. The pathological processes of acne are not fully understood. To gain further insight sebaceous follicular casts were extracted from 18 healthy and 20 acne-affected individuals by cyanoacrylate-gel biopsies and further processed for mass spectrometry analysis, aiming at a proteomic analysis of the sebaceous follicular casts. Human as well as bacterial proteins were identified. Human proteins enriched in acne and normal samples were detected, respectively. Normal follicular casts are enriched in proteins such as prohibitins and peroxiredoxins which are involved in the protection from various stresses, including reactive oxygen species. By contrast, follicular casts extracted from acne-affected skin contained proteins involved in inflammation, wound healing and tissue remodeling. Among the most distinguishing proteins were myeloperoxidase, lactotransferrin, neutrophil elastase inhibitor and surprisingly, vimentin. The most significant biological process among all acne-enriched proteins was 'response to a bacterium'. Identified bacterial proteins were exclusively from Propionibacterium acnes. The most abundant P. acnes proteins were surface-exposed dermatan sulphate adhesins, CAMP factors, and a so far uncharacterized lipase in follicular casts extracted from normal as well as acne-affected skin. This is a first proteomic study that identified human proteins together with proteins of the skin microbiota in sebaceous follicular casts.
    PLoS ONE 09/2014; 9(9):e107908. DOI:10.1371/journal.pone.0107908 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The opportunistic human pathogen Propionibacterium acnes is comprised of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II and III, that vary in their production of putative virulence factors, inflammatory potential, as well as biochemical, aggregative and morphological characteristics. Although Multilocus Sequence Typing (MLST) currently represents the gold standard for unambiguous phylogroup classification, and individual strain identification, it is a labour and time-consuming technique. As a consequence, we have developed a multiplex touchdown PCR assay that will, in a single reaction, confirm species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA (all isolates), ATPase (type IA1, IA2, IC), sodA (type IA2, IB), atpD (type II) and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterised by MLST, and representing type IA1 (n=145), IA2 (n=20), IB (n=65), IC (n=7), II (n=45) and III (n=30), the multiplex displayed 100% sensitivity and 100% specificity for the detection of isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. The multiplex assay will provide researchers with a rapid, high-throughput and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, as well as a pre-screening tool to maximise the number of genetically diverse isolates selected for downstream, higher resolution sequence-based analyses.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Propionibacterium acnes belongs to the normal skin microbiota, but it is also responsible for acne vulgaris and causes serious infections such as endocarditis and surgical site infections (SSI). The P. acnes population is structured into phylogenetic groups, with phylotype I being associated with acne. Herein, we explore the link between phylotypes and clinical origins in a collection of P. acnes isolated from different body sites, involved in deep infections or healthcare-associated infections (HAI), with particular emphasis on strains from cardiac SSI. Cardiac SSI have been further studied in terms of P. acnes population dynamics during the care pathway. The recA and tly genes phylotypes were compared to hemolytic behavior, susceptibility to antimicrobial agents, and clinical origins. An original approach of recA polymerase chain reaction temporal temperature gel electrophoresis (PCR-TTGE) was developed and applied for the direct identification of P. acnes phylotypes in surgical samples, in order to assess their temporal dynamics during the surgical course. Our results underlined the preferential involvement of IA-2/IB and II phylogroups in HAI and SSI. Unlike IA and II, type IA-2/IB presented a gradual increase with the depth of sampling in the peroperative phase of cardiac surgery. Phylotypes IA and IA-2/IB were both predominant in scar tissues and on postoperative skin, suggesting a specific predisposition to recolonize skin. Particular association of the phylotype IA-2/IB with SSI and its propensity to colonize wounds in cardiac surgery was observed. We assumed that the follow-up of P. acnes phylotypes during pathological processes could give new clues for P. acnes pathogenicity.
    European Journal of Clinical Microbiology 08/2014; 34(2). DOI:10.1007/s10096-014-2228-2 · 2.54 Impact Factor


Available from
May 15, 2014