Article

Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase.

Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8567, Japan.
Journal of bacteriology (Impact Factor: 2.69). 04/2008; 190(6):2050-5. DOI: 10.1128/JB.01799-07
Source: PubMed

ABSTRACT Isocitrate dehydrogenase (ICDH) from Hydrogenobacter thermophilus catalyzes the reduction of oxalosuccinate, which corresponds to the second step of the reductive carboxylation of 2-oxoglutarate in the reductive tricarboxylic acid cycle. In this study, the oxidation reaction catalyzed by H. thermophilus ICDH was kinetically analyzed. As a result, a rapid equilibrium random-order mechanism was suggested. The affinities of both substrates (isocitrate and NAD+) toward the enzyme were extremely low compared to other known ICDHs. The binding activities of isocitrate and NAD+ were not independent; rather, the binding of one substrate considerably promoted the binding of the other. A product inhibition assay demonstrated that NADH is a potent inhibitor, although 2-oxoglutarate did not exhibit an inhibitory effect. Further chromatographic analysis demonstrated that oxalosuccinate, rather than 2-oxoglutarate, is the reaction product. Thus, it was shown that H. thermophilus ICDH is a nondecarboxylating ICDH that catalyzes the conversion between isocitrate and oxalosuccinate by oxidation and reduction. This nondecarboxylating ICDH is distinct from well-known decarboxylating ICDHs and should be categorized as a new enzyme. Oxalosuccinate-reducing enzyme may be the ancestral form of ICDH, which evolved to the extant isocitrate oxidative decarboxylating enzyme by acquiring higher substrate affinities.

0 Followers
 · 
70 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms.
    BMC Genomics 01/2009; 9:581. DOI:10.1186/1471-2164-9-581 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aminotransferases catalyse synthetic and degradative reactions of amino acids, and serve as a key linkage between central carbon and nitrogen metabolism in most organisms. In this study, three aminotransferases (AT1, AT2 and AT3) were purified and characterized from Hydrogenobacter thermophilus, a hydrogen-oxidizing chemolithoautotrophic bacterium, which has been reported to possess unique features in its carbon and nitrogen anabolism. AT1, AT2 and AT3 exhibited glutamate:oxaloacetate aminotransferase, glutamate:pyruvate aminotransferase and alanine:glyoxylate aminotransferase activities, respectively. In addition, both AT1 and AT2 catalysed a glutamate:glyoxylate aminotransferase reaction. Interestingly, phylogenetic analysis showed that AT2 belongs to aminotransferase family IV, whereas known glutamate:pyruvate aminotransferases and glutamate:glyoxylate aminotransferases are members of family Igamma. In contrast, AT3 was classified into family I, distant from eukaryotic alanine:glyoxylate aminotransferases which belong to family IV. Although Thermococcus litoralis alanine:glyoxylate aminotransferase is the sole known example of family I alanine:glyoxylate aminotransferases, it is indicated that this alanine:glyoxylate aminotransferase and AT3 are derived from distinct lineages within family I, because neither high sequence similarity nor putative substrate-binding residues are shared by these two enzymes. To our knowledge, this study is the first report of the primary structure of bacterial glutamate:glyoxylate aminotransferase and alanine:glyoxylate aminotransferase, and demonstrates the presence of novel types of aminotransferase phylogenetically distinct from known eukaryotic and archaeal isozymes.
    FEBS Journal 03/2010; 277(8):1876-85. DOI:10.1111/j.1742-4658.2010.07604.x · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. In the extant biosphere the reductive pentose phosphate (Calvin-Benson) cycle is the predominant mechanism by which many prokaryotes and all plants fix CO(2) into biomass. However, the fact that five alternative autotrophic pathways exist in prokaryotes is often neglected. This bias may lead to serious misjudgments in models of the global carbon cycle, in hypotheses on the evolution of metabolism, and in interpretations of geological records. Here, I review these alternative pathways that differ fundamentally from the Calvin-Benson cycle. Revealingly, these five alternative pathways pivot on acetyl-coenzyme A, the turntable of metabolism, demanding a gluconeogenic pathway starting from acetyl-coenzyme A and CO(2). It appears that the formation of an activated acetic acid from inorganic carbon represents the initial step toward metabolism. Consequently, biosyntheses likely started from activated acetic acid and gluconeogenesis preceded glycolysis.
    Annual review of microbiology 09/2010; 65(1):631-58. DOI:10.1146/annurev-micro-090110-102801 · 13.02 Impact Factor
Show more

Preview

Download
5 Downloads
Available from