A channel-resolved approach coupled with magnet-captured technique for multianalyte chemiluminescent immunoassay.

Key Laboratory of Analytical Chemistry for Life Science (Ministry of Education of China), Department of Chemistry, Nanjing University, Nanjing 210093, China.
Biosensors & Bioelectronics (Impact Factor: 6.45). 06/2008; 23(10):1422-8. DOI: 10.1016/j.bios.2007.11.017
Source: PubMed

ABSTRACT A concept of channel-resolved multianalyte immunoassay (MAIA) and a semi-automated flow-through chemiluminescent (CL) MAIA system coupled with magnet-captured technique were proposed for rapid quantitation of different analytes in a single run. Using alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carcinoma antigen 125 (CA 125) as model analytes. They were firstly incubated in the mixtures of capture antibodies-immobilized paramagnetic microspheres (PMs) and corresponding alkaline phosphatase-labeled antibodies under stir and pumped into three parallel detection channels, the PMs were simultaneously captured by magnet, and the CL signals from the three channels were then sequentially collected with the aid of optical shutters to perform quantitative detection. AFP, CEA and CA 125 could be rapidly assayed in the ranges of 1.0-40microg/l, 0.20-30microg/l and 1.0-50kU/l with the detection limits of 0.60microg/l, 0.080microg/l and 0.70kU/l at 3sigma, respectively. After manual dispensing of specimen and reagents the whole assay process could be completed in 18min. The assay results of clinical serum samples with the proposed method were in acceptable agreement with the reference values. This system, based on the designed channel-resolved strategy and magnet-captured technique provides a semi-automated, reusable, simple, sensitive, rapid and low-cost approach for MAIA without using of expensive array detector.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanobodies, derived from camelid heavy-chain antibodies, have novel and impactful applications in clinical diagnostics. Our objective is to develop a nanobody-based chemiluminescence immunoassay for sensitive detection of human prealbumin (PA). In this context, a phage display nanobody library is constructed via immunizing dromedary camel with human prealbumin. Three nanobodies have been identified by five successive bio-panning steps. Based on their high expression level and good affinity, two out of three are chosen for further study. Magnetic beads (MBs) were functionalized with PEI by acylamide bond formed between the carboxyl group on the surface of the MB. Then, an anti-PA nanobody (Nb1) can be effectively immobilized onto the surface of the functionalized MB using glutaradehyde as the link. The modified MBs with Nb1 can specifically capture the target PA and reacted with silica nanoparticles with co-immobilized HRP and anti-PA nanobody (Nb2). The concentration of PA was detected by flow injection chemiluminescence. When using MB/PEI as the carrier of anti-PA Nb1, the CL signal significantly increased to 4-fold compared with the signal using MB without PEI modification. The CL signal was further amplified to 5-fold when Si/Nb2 was used as the signal probe. Under optimized conditions, the present immunoassay exhibited a wide quantitative range from 0.05 to 1000μgL(-1) with a detection limit of 0.01μgL(-1). The sensitivity of the proposed immunoassay offers great promises in providing a sensitive, specific, time saving, and potential method for detecting PA in clinical settings.
    Biosensors & Bioelectronics 05/2014; 61C:165-171. · 6.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, a novel, low-cost electrochemiluminescence (ECL) immunosensor using core-shell Fe3O4-Au magnetic nanoparticles (AuMNPs) as the carriers of the primary antibody of carbohydrate antigen 125 (CA125) was designed. Graphene sheet (GS) with property of good conductivity and large surface area was a captivating candidate to amplify ECL signal. We successively synthesized functionalized GS by loading large amounts of quantum dots (QDs) onto the poly (diallyldimethyl-ammonium chloride) (PDDA) coated graphene sheet (P-GS@QDs) via self-assembly electrostatic reactions, which were used to label secondary antibodies. The ECL immunosensors coupled with a microfluidic strategy exhibited a wide detection range (0.005-50UmL(-1)) and a low detection limit (1.2mUmL(-1)) with the help of an external magnetic field to gather immunosensors. The method was evaluated with clinical serum sample, receiving good correlation with results from commercially available analytical procedure.
    Analytica chimica acta 04/2013; 770:132-9. · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analytical applications of chemiluminescence detection systems based on magnetic microparticles and nanoparticles (MMP-CL and MNP-CL) have attracted growing interest in research and commercial fields. This article reviews the literature on the analytical applications of MMP-CL and MNP-CL systems, illustrated by different reaction strategies, such as immunoassay and hybridization labels in diverse fields (e.g., clinical and pharmaceutical, environmental or food analysis).
    TrAC Trends in Analytical Chemistry 11/2013; 51:51–70. · 6.61 Impact Factor


1 Download
Available from