Reduced expression and function of aquaporin-3 in mouse metaphase-II oocytes induced by controlled ovarian hyperstimulation were associated with subsequent low fertilization rate

Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
Cellular Physiology and Biochemistry (Impact Factor: 3.55). 02/2008; 21(1-3):123-8. DOI: 10.1159/000113754
Source: PubMed

ABSTRACT Aquaporin-3 (AQP3), one isoform of water channel family, has been found to be expressed in mouse oocytes. The present study aimed to investigate whether functional AQP3 was expressed in oocytes induced by controlled ovarian hyperstimulation (COH), and whether altered oocyte AQP3 expression was associated with changes in fertilization rate.
Sixty ICR female mice were divided into two groups: COH and control. AQP3 mRNA expression of mouse metaphase II (MII) oocytes was quantified by real-time RT-PCR. The water permeability of oocytes was assessed with cell swelling test. The fertilization profiles of oocytes were generated via in vitro fertilization.
AQP3 mRNA was expressed in both natural and COH-induced mouse oocytes. COH significantly reduced AQP3 mRNA expression. The volume of oocytes was significantly increased after exposure to hypotonic medium and pretreatment with HgCl(2) attenuated hypotonic medium-induced increase in oocyte volume and water permeability coefficient (Pf). Furthermore, the expression of AQP3, Pf and the fertilization rate were significantly lower in COH oocytes than those in control.
AQP3 might play an important role in controlling oocyte quality and a low in vitro fertilization rate of COH mice might, in part, result from reduced AQP3 expression and water permeability in mouse oocytes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To study the differences in protein expression profiles of follicular fluid (FF) between controlled ovarian hyperstimulation (COH) and natural ovulatory cycles. Twelve infertile women undergoing in vitro fertilization and embryo transfer (IVF-ET), with matched clinical information, were retrospectively recruited in the IVF center of our university hospital, including six undergoing COH and another six with natural cycles. FF was sampled from dominant follicles with mature oocytes. Protein expression profiles in each FF sample were analyzed respectively using two-dimensional gel electrophoresis. Differentially expressed proteins were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and validated by western blotting. Differentially expressed proteins were further analyzed using Ingenuity Pathway Analysis (IPA) software. Two proteins were downregulated and 11 proteins were upregulated (change ≥1.5-fold, P < 0.05) in the COH group. We identified one down-egulated and seven upregulated proteins using MALDI-TOF MS. Four differentially expressed proteins, including transferrin, complement component C3 (C3), haptoglobin and alpha-1-antitrypsin (AAT), were further validated by rate nephelometry and western blotting analyses. The IPA analysis revealed a significant network involved in the humoral immune and inflammatory responses. The eight differentially expressed proteins were related to immune and inflammatory responses in the ovary. Our results provide new insights into the influence of COH on follicular (spp) development and IVF outcomes.
    Journal of Assisted Reproduction and Genetics 01/2015; DOI:10.1007/s10815-014-0419-5 · 1.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mRNA expression and localization of Aquaporin 3 (AQP3) were investigated in the ovarian follicles of ewes at different stages of development (primordial, primary, secondary, small, and large antral). The gene expression was quantified by qPCR, while the protein identification and localization were determined by Western blot and immunohistochemistry, respectively. Analysis revealed that AQP3 mRNA was detected only in the antral follicles, whereas the protein expression was detected in the oocyte and granulosa cells in all stages of follicular development. The latter observation suggests that the presence of AQP3 in follicles of all categories, especially in the antral follicles, provides novel insights on the mechanisms that regulate the flow of water between cells during the formation of antral follicles in sheep.
    Acta histochemica 06/2014; DOI:10.1016/j.acthis.2014.02.001 · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the antral follicle phase, several layers of cumulus cells surround the oocyte and play an important support and regulation role in oocyte development and maturation via intercellular communications and interactions between oocytes and cumulus cells. However, information on stage specific gene expression in swine during the phase is not well understood. To investigate the function of cumulus cells during in vitro maturation of porcine oocytes and gene expression, suppression subtractive hybridization (SSH) was performed to screen genes that were differentially expressed between cumulus-oocyte complexes (COCs) and naked oocytes (NOs). Utilizing mRNAs from in vitro maturation oocytes, a SSH cDNA library from COCs as the tester and NOs as the driver was constructed. The SSH cDNA library was then screened using dot blot analysis. Results showed that a total of 70 clones randomly selected from the library were differentially expressed. Among these, 41 exhibited high homology to known genes and 11 were novel expressed sequences tags (ESTs). Four differentially expressed genes, including bfgf, sprouty 2, egr and btc, were further studied by real time quantitative PCR; results confirmed an increased expression of respective mRNA in COCs compared with NOs, which suggests that these factors may play an important role in oocyte development and maturation.
    Asian Australasian Journal of Animal Sciences 01/2010; 23(1). DOI:10.5713/ajas.2010.90249 · 0.56 Impact Factor