Photodistribution of Blue-Gray Hyperpigmentation After Amiodarone Treatment

Service de Dermatologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, 31059 Toulouse CEDEX, France.
Archives of dermatology (Impact Factor: 4.79). 02/2008; 144(1):92-6. DOI: 10.1001/archdermatol.2007.25
Source: PubMed


For decades, the photodistributed blue-gray skin hyperpigmentation observed after amiodarone therapy was presumably attributed to dermal lipofuscinosis. Using electron microscopy and high-performance liquid chromatography, we identified amiodarone deposits in the hyperpigmented skin sample from a patient treated with this antiarrhythmic agent. Our findings therefore indicate that the hypothesis relating the blue-gray hyperpigmentation to lipofuscin should be challenged.
A 64-year-old man, skin phototype III, presented with asymptomatic skin hyperpigmentation that had been slowly developing on sun-exposed areas since April 2004. He had been taking amiodarone for 4 years (cumulative dose, 277 g). Electron microscopy did not show lipofuscin pigments in his skin. Conversely, abundant electron-dense membrane-bound granule deposits were observed in most of the dermal cells (fibroblasts, macrophages, pericytes, Schwann cells, and endothelial cells), especially in photoexposed skin. High-performance liquid chromatography confirmed that the skin deposits were composed of amiodarone. These results demonstrate that amiodarone hyperpigmentation is related to drug deposition on photoexposed skin.
Amiodarone-related hyperpigmentation should be considered a skin storage disease that is secondary to drug deposition.

7 Reads
    • "However, the hydrophilic local anesthetics, like lidocaine and procaine, are used as highly concentrated (mM) solutions in confined anatomic areas, and the characteristic cell vacuolization has been observed in tissue sections from treated patients (Vallance, Chaba, Clarke, & Taylor, 2004). The antiarrhythmic drug amiodarone is extensively deposited in various tissues during systemic administration (Fig. 7.2, step 9; Ammoury et al., 2008). More generally, it is suspected that ion trapping of weak bases is a general pharmacokinetic determinant of the very high apparent volume of distribution of most cationic drugs (high ratio of tissue/blood concentrations ) and long persistence following cessation (Marceau et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: All nucleated cells, from yeast to animal cells, concentrate cationic chemicals (weak bases with a pKa~8-10) into acidic cell compartments (low retro-diffusion under a protonated form at low pH=ion trapping). The proton pump vacuolar (V)-ATPase is the driving force of this pseudotransport that concerns acidic organelles (mainly late endosomes and lysosomes). The latter rapidly become swollen (osmotic vacuolization) and macroautophagic. Cation concentration in cells is not proved to involve membrane transporters, but is prevented or reversed by inhibitors of V-ATPase, such as bafilomycin A1. Lipophilicity is a major determinant of the apparent affinity of this pseudotransport because simple diffusion of the uncharged form supports it. Quinacrine is a formerly used antiparasitic drug that is intensely fluorescent, lipophilic, and a tertiary amine. The drug, at micromolar concentrations, is proposed as a superior probe for assessing cation trapping by cellular acidic compartments, being readily quantified using fluorometry in cell extracts and analyzed using microscopy and cytofluorometry (fluorescence settings for fluorescein being applicable). Further, cells respond to micromolar levels of quinacrine by autophagic accumulation (e.g., accumulation of the activated macroautophagic effector LC3 II, immunoblots), an objective and universal response to sequestered amines.
    Methods in enzymology 01/2014; 534:119-31. DOI:10.1016/B978-0-12-397926-1.00007-X · 2.09 Impact Factor

  • Side Effects of Drugs Annual 01/2009; 17:215-233. DOI:10.1016/S0378-6080(05)80201-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue deposits of the anti-arrhythmic drug amiodarone are a major source of side effects (skin discoloration, etc.). We addressed the mechanism of the concentration of amiodarone in cells, and characterized the resulting vacuolar cytopathology and its evolution towards macroautophagy. Sequestration of amiodarone in human cells (macrophages, smooth muscle cells, HEK 293a cells) was evaluated using its violet fluorescence and cytopathology using GFP-conjugated subcellular markers. Autophagic signalling was probed by immunoblotting for the effector protein LC3. A patient biopsy of amiodarone-induced blue-gray skin discoloration was investigated for the presence of macroautophagy (immunofluorescence for LC3). Most of the amiodarone (1-20 microM, 4-24 h) captured by cultured cells (macrophages were most avid) was present in enlarged vacuoles. The specific vacuolar ATPase (V-ATPase) inhibitors, bafilomycin A1 or FR167356, prevented vacuolization and drug uptake. Vacuoles in HEK 293a cells were positive for markers of late endosomes and lysosomes (GFP-Rab7, -CD63) and for an effector of macroautophagy, GFP-LC3. The vacuoles accumulated endogenous LC3 and filled with lipids (Nile red staining) following longer amiodarone treatments (> or =24 h). The electrophoretic mobility of both GFP-LC3 and endogenous LC3 changed, showing activation in response to amiodarone. Paraffin tissue sections of the pigmented skin exhibited granular LC3 accumulation in superficial dermis macrophages. Vacuolar sequestration of amiodarone occurs at concentrations close to therapeutic levels, is mediated by V-ATPase and evolves towards persistent macroautophagy and phospholipidosis. This cytopathology is not cell type specific, but tissue macrophages appear to be particularly susceptible.
    British Journal of Pharmacology 07/2009; 157(8):1531-40. DOI:10.1111/j.1476-5381.2009.00320.x · 4.84 Impact Factor
Show more