Identification of a Molecular Signature in Human Type 1 Diabetes Mellitus Using Serum and Functional Genomics

Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee 53226, USA.
The Journal of Immunology (Impact Factor: 4.92). 03/2008; 180(3):1929-37. DOI: 10.4049/jimmunol.180.3.1929
Source: PubMed


Understanding active proinflammatory mechanisms at and before type 1 diabetes mellitus (T1DM) onset is hindered in humans, given that the relevant tissues are inaccessible and pancreatic immune responses are difficult to measure in the periphery by traditional approaches. Therefore, we investigated the use of a sensitive and comprehensive genomics strategy to investigate the presence of proinflammatory factors in serum. The sera of recent onset diabetes patients (n = 15, 12 possessing and 3 lacking islet cell autoantibodies), long-standing diabetes patients (n = 12), "at risk" siblings of diabetes patients (n = 9), and healthy controls (n = 12) were used to induce gene expression in unrelated, healthy PBMC. After culture, gene expression was measured with microarrays and normalized expression data were subjected to hierarchical clustering and multidimensional scaling. All recent onset sera induced an expression signature (192 UniGenes; fold change: >1.5, p < 0.01; false discovery rate: <0.01) that included IL-1 cytokine family members and chemokines involved in monocyte/macrophage and neutrophil chemotaxis, as well as numerous receptors and signaling molecules. This molecular signature was not induced with the sera of healthy controls or long standing diabetes patients, where longitudinal analysis of "at risk" siblings (n = 3) before and after onset support the hypothesis that the signature emerges years before onset. This study supports prior investigations of serum that reflect disease processes associated with progression to T1DM. Identification of unique inflammatory mediators may improve disease prediction beyond current islet autoantibodies. Furthermore, proinflammatory serum markers may be used as inclusion criteria or endpoint measures in clinical trials aimed at preventing T1DM.

Download full-text


Available from: Shuang Jia,
  • Source
    • "PMNs were better sensors of immunostimulatory factors present in plasma, displaying improved ability to discriminate septic from uninfected subjects, and PMNs mobilized the most robust immune transcriptional program. This finding was not initially expected given that PBMCs have been to date the preferred “serum sensing” cell reporter system [9], and given that dendritic cells are well known for their sentinel role in the immune system and have ability to respond to a wide range of immune triggers. However our findings are consistent with the role of PMNs, which serve as the first line of the cellular innate immune response and are a major source of acute phase immune mediators [49,50]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There are diverse molecules present in blood plasma that regulate immune functions and also present a potential source of disease biomarkers and therapeutic targets. Genome-wide profiling has become a powerful method for assessing immune responses on a systems scale, but technologies that can measure the plasma proteome still face considerable challenges. An alternative approach to direct proteome assessment is to measure transcriptome responses in reporter cells exposed in vitro to plasma. In this report we describe such a "transcriptomic reporter assay" to assess plasma from patients with sepsis, which is a common and severe systemic infectious process for which physicians lack efficient diagnostic or prognostic markers. Plasma samples collected from patients with culture-confirmed bacterial sepsis and uninfected healthy controls were used to stimulate three separate cell types - neutrophils, peripheral blood mononuclear cells, and monocyte-derived dendritic cells. Whole genome microarrays were generated from stimulated cells to assess transcriptional responses. Unsupervised analysis and enriched functional networks were evaluated for each cell type. Principal component analyses were used to assess variability in responses. A random K-nearest neighbor - feature selection algorithm was used to identify markers predictive of sepsis severity, which were then validated in an independent data set. Neutrophils demonstrated the most distinct response to plasma from septic patients with 709 genes showing altered expression profiles, many of which are involved in established immunologic pathways. The amplitude of the neutrophil transcriptomic response was shown to be correlated with sepsis severity in two independent sets of patients comprised of 64 total septic patients. A subset of 30 transcripts selected using one set of patients was demonstrated to have a high degree of accuracy (82-90%) in predicting sepsis severity and outcomes in the other independent set. This subset included several genes previously established in sepsis pathogenesis as well as novel genes. These results demonstrate both the suitability and potential clinical relevance of a neutrophil reporter assay for studying plasma, in this case from septic patients. The distinctive transcriptional signature we found could potentially help predict severity of disease and guide treatment. Our findings also shed new light on mechanisms of immune dysregulation in sepsis.
    Journal of Translational Medicine 03/2014; 12(1):65. DOI:10.1186/1479-5876-12-65 · 3.93 Impact Factor
  • Source
    • "A recent functional genomics study of human sera found the importance of IL-1 in type 1 diabetes pathogenesis [23], supporting the relevance of our cytokine data obtained from the BBDR rat. Innate immune response and IL-1 regulated genes were identified in PBMCs incubated with sera from recent-onset type 1 diabetes patients, but not from sera of long-standing diabetes patients or healthy controls [23]. Moreover, even in pre-diabetic children, multiple proinflammatory cytokines, including IL-1β and IL-12, were significantly higher in children positive for islet autoantibodies compared to age-matched autoantibody-negative control subjects [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR) rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID), to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV) and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist) develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein) in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.
    PLoS ONE 10/2013; 8(10):e78050. DOI:10.1371/journal.pone.0078050 · 3.23 Impact Factor
  • Source
    • "Blocking the IL-1 pathway protected from T1D in animal models and treating non–diabetes-prone animals with IL-1 caused transient insulinopenic diabetes (25). Finally, earlier reports have linked IL-1 cytokine family members, including IL-1β, IL-1R1, and IL-1R2, with human T1D (26). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypothesis that altered Toll-like receptor (TLR) signaling may be involved in early stages of type 1 diabetes (T1D). To do so, we analyzed TLR-induced interleukin (IL)-1β and IL-6 responses in freshly isolated peripheral blood mononuclear cells (PBMNCs) from seropositive compared with seronegative subjects. Similar frequencies of myeloid dendritic cells (mDCs), plasmacytoid DCs (pDCs), and monocytes were observed in seropositive and seronegative subjects. Subjects with autoantibodies had increased proportions of monocytes expressing IL-1β ex vivo. Activating PBMNCs with TLR3, TLR4, or TLR7/8 agonists in vitro led to increased percentages of IL-1β-expressing monocytes and mDCs from seropositive versus seronegative subjects. TLR ligation also resulted in a diminished IL-6 response in seropositive individuals as lower frequencies of IL-6-expressing monocytes and mDCs were induced. The dysregulated TLR-induced IL-1β and IL-6 pathways were more readily detectable in children aged <11 years and from 11 to <21 years, respectively, and did not involve altered HbA(1c) or the presence of one or more autoantibodies. Finally, subjects with autoantibodies had lower amounts of serum chemokine (C-X-C motif) ligand 10 compared with autoantibody-negative subjects. Our data may imply that alterations in innate immune pathways are detectable in genetically susceptible individuals and could be linked with the early course of T1D.
    Diabetes 06/2012; 61(10):2525-33. DOI:10.2337/db12-0099 · 8.10 Impact Factor
Show more