Article

Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity.

Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Roger Guidon Hall, 451 Smyth Rd., Ottawa, ONT K1H 8M5, Canada.
Molecular and Cellular Biology (Impact Factor: 5.04). 05/2008; 28(7):2244-56. DOI: 10.1128/MCB.01653-07
Source: PubMed

ABSTRACT The Saccharomyces cerevisiae NuA4 histone acetyltransferase complex catalyzes the acetylation of histone H4 and the histone variant Htz1 to regulate key cellular events, including transcription, DNA repair, and faithful chromosome segregation. To further investigate the cellular processes impacted by NuA4, we exploited the nonessential subunits of the complex to build an extensive NuA4 genetic-interaction network map. The map reveals that NuA4 is a genetic hub whose function buffers a diverse range of cellular processes, many not previously linked to the complex, including Golgi complex-to-vacuole vesicle-mediated transport. Further, we probe the role that nonessential subunits play in NuA4 complex integrity. We find that most nonessential subunits have little impact on NuA4 complex integrity and display between 12 and 42 genetic interactions. In contrast, the deletion of EAF1 causes the collapse of the NuA4 complex and displays 148 genetic interactions. Our study indicates that Eaf1 plays a crucial function in NuA4 complex integrity. Further, we determine that Eaf5 and Eaf7 form a subcomplex, which reflects their similar genetic interaction profiles and phenotypes. Our integrative study demonstrates that genetic interaction maps are valuable in dissecting complex structure and provides insight into why the human NuA4 complex, Tip60, has been associated with a diverse range of pathologies.

Download full-text

Full-text

Available from: Ashraf Madhoun, Jul 01, 2015
0 Followers
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tra1 is a 3744-residue component of the Saccharomyces cerevisiae SAGA, NuA4, and ASTRA complexes. Tra1 contains essential C-terminal PI3K and FATC domains, but unlike other PIKK (phosphoinositide three-kinase-related kinase) family members, lacks kinase activity. To analyze functions of the FATC domain, we selected for suppressors of tra1-F3744A, an allele that results in slow growth under numerous conditions of stress. Two alleles of TTI2, tti2-F328S and tti2-I336F, acted in a partially dominant fashion to suppress the growth-related phenotypes associated with tra1-F3744A as well as its resulting defects in transcription. tti2-F328S suppressed an additional FATC domain mutation (tra1-L3733A), but not a mutation in the PI3K domain or deletions of SAGA or NuA4 components. We find eGFP-tagged Tti2 distributed throughout the cell. Tti2 is a component of the ASTRA complex, and in mammalian cells associates with molecular chaperones in complex with Tti1 and Tel2. Consistent with this finding, Tra1 levels are reduced in a strain with a temperature-sensitive allele of tel2. Further agreeing with a possible role for Tti2 in the folding or stabilization of Tra1, tra1-F3744A was mislocalized to the cytoplasm, particularly under conditions of stress. Since an intragenic mutation of tra1-R3590I also suppressed F3744A, we propose that Tti2 is required for the folding/stability of the C-terminal FATC and PI3K domains of Tra1 into their functionally active form.
    Genetics 04/2012; 191(3):765-80. DOI:10.1534/genetics.112.140459 · 4.87 Impact Factor
  • Source
    Colorectal Cancer Biology - From Genes to Tumor, 02/2012; , ISBN: 978-953-51-0062-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Determining the architectures of protein complexes improves our understanding of protein cellular functions. In order to efficiently characterize the subunits of protein complexes assembled in vivo, affinity purification followed by proteomics mass spectrometry (APMS) strategies have been devised. Partial or whole protein complexes are first biochemically isolated using tagged components of the complex, followed by an identification of all co-purified proteins using mass spectrometry. However, those approaches are insufficient to provide information about the spatial arrangement and the interrelationship of the proteins of the respective complex. In this study, we developed and applied a novel method utilizing biochemistry, quantitative proteomics and computational approaches in order to characterize the organization of proteins in a complex. The key of our method is the systematic purification of several tagged components of the protein complex in multiple genetic deletion strains, which serve to compromise the integrity of the complex. Using a series of computational methods, these raw quantitative values are next interpreted in order to determine the modular organization of the complex as well as the interrelationships between its subunits, which in turn can be used to predict a macromolecular model of the complex. We tested this approach to obtain novel insights into the architecture of multi-protein complexes on the Saccharomyces cerevisiae Spt–Ada–Gcn5 histone acetyltransferase (HAT) (SAGA) and ADA complexes, which are conserved complexes involved in chromatin remodeling (Koutelou et al, 2010). Regular quantitative APMS strategies in wild-type backgrounds were not sufficient to separate tight protein complexes like SAGA/ADA into its distinct modules. However, after perturbing the system using genetic deletions of several subunits located in different topological parts of SAGA, hierarchical cluster analysis performed on 34 purifications (generated using 10 different TAP-tagged baits) resulted in a dissociation of the Gcn5 HAT complexes into five modules: (1) the SA_TAF module, (2) the SA_SPT module, (3) the DUB module, (4) the HAT/Core module and (5) the ADA module (Figure 2A and B). The approach of purifying a protein in a deletion strain furthermore provides valuable information about the influence of the deleted subunit on the association and interdependency of the bait and the remaining preys. In order to quantify these associations, we calculated a probability between every prey and bait in the deletion strain purifications based on Bayes' theorem (Sardiu et al, 2008). In conjunction with preexisting interaction data obtained from yeast two-hybrid and genetic complementation assays, we finally used these probabilities to predict a low-resolution model for the architecture of the SAGA and ADA complexes (Figure 4). This novel approach revealed that the SAGA/ADA complexes are composed of five distinct functional modules, of which two were not previously described (SA_SPT and SA_TAF). These modules, which are responsible for different functions of the SAGA complex, are capable of assembling independently from the remaining modules of the complex. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 HAT complexes. Compared with other structural studies, which mapped 9 of the 19 known SAGA subunits using single EM reconstruction (Wu et al, 2004) or resolved the structure of the 4 subunits of the DUB module using X-ray crystallography (Kohler et al, 2010; Samara et al, 2010), our approach is not limited to a maximum number of complex subunits. Consequently, we were able to construct a macromolecular model consisting of all 21 SAGA/ADA subunits, which bridges the gap between the previous limited EM analysis and focused X-ray crystallography analysis.
    Molecular Systems Biology 07/2011; 7:503. DOI:10.1038/msb.2011.40 · 14.10 Impact Factor