Acute nerve compression and the compound muscle action potential

Department of Neurology, Geisinger Medical Center, Danville, PA 17822 USA.
Journal of Brachial Plexus and Peripheral Nerve Injury 02/2008; 3:1. DOI: 10.1186/1749-7221-3-1
Source: PubMed

ABSTRACT Detecting acute nerve compression using neurophysiologic studies is an important part of the practice of clinical intra-operative neurophysiology. The goal of this paper was to study the changes in the compound muscle action potential (CMAP) during acute mechanical compression. This is the type of injury most likely to occur during surgery. Thus, understanding the changes in the CMAP during this type of injury will be useful in the detection and prevention using intra-operative neurophysiologic monitoring.
The model involved compression of the hamster sciatic nerve over a region of 1.3 mm with pressures up to 2000 mmHg for times on the order of 3 minutes. In this model CMAP amplitude dropped to 50% of its baseline value when a pressure of roughly 1000 mmHg is applied while, at the same time, nerve conduction velocities decline by only 5%. The ability to detect statistically significant changes in the CMAP at low force levels using other descriptors of the CMAP including duration, latency variation, etc alone or in conjunction with amplitude and velocity measures was investigated. However, these other parameters did not allow for earlier detection of significant changes.
This study focused on a model in which nerve injury on a short time scale is purely mechanical in origin. It demonstrated that a pure compression injury produced large changes in CMAP amplitude prior to large changes in conduction velocity. On the other hand, ischemic and stretch injuries are associated with larger changes in conduction velocity for a given value of CMAP amplitude reduction.

Download full-text


Available from: Kelly Baylor, Jun 03, 2014
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: After restitution of motor function the grasping test alone is insufficient to figure out any further differences of axonal nerve regeneration of the median nerve in rats. To avoid this problem we developed a standardized electrophysiologic method for testing median nerve regeneration. Threshold, latency, compound muscle action potentials (CMAP) and velocity of neuromuscular transduction were recorded in 54 rats 20 weeks post-operatively. Animals of group 1 served as control group, no transection of the median nerve was carried out. Animals of groups 2 and 3 underwent either primary nerve coaptation or autologous nerve grafting after transection of the median nerve. To ensure validity of the method additional correlation between all parameters was investigated. Reliable electrophysiological results were observed in all animals. As expected, group 1 animals showed lowest threshold and latency and highest CMAP levels. Transection of the median nerve and additional nerve repair leads to significant increase of threshold and latency as well as reduction of CMAP. Furthermore, animals of group 3 showed higher levels for threshold and latency and reduced CMAP levels compared with animals of group 2. The grasping test alone could not demonstrate these slight differences 20 weeks post-operatively. Additionally, we observed strong correlations between threshold, latency and CMAP using the Spearman correlation ranking. We describe the usage of motor neurography as a reproducible and valid tool which should be mandatory for detailed analysis of regeneration in the rat median nerve model.
    Journal of neuroscience methods 07/2009; 182(1):71-7. DOI:10.1016/j.jneumeth.2009.05.017 · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix of peripheral nerve is formed from a diverse set of macromolecules, including glycoproteins, collagens and proteoglycans. Recent studies using knockout animal models have demonstrated that individual components of the extracellular matrix play a vital role in peripheral nerve development and regeneration. In this study we identified fibrillin-1 and fibrillin-2, large modular structural glycoproteins, as components of the extracellular matrix of peripheral nerve. Previously it was found that fibrillin-2 null mice display joint contractures, suggesting a possible defect of the peripheral nervous system in these animals. Close examination of the peripheral nerves of fibrillin-2 deficient animals described here revealed some structural abnormalities in the perineurium, while general structure of the nerve and molecular composition of nerve extracellular matrix remained unchanged. We also found that in spite of the obvious motor function impairment, fibrillin-2 null mice failed to display changes of nerve conduction properties or nerve regeneration capacity. Based on the data obtained we can conclude that peripheral neuropathy should be excluded as the cause of the impairment of locomotory function and joint contractures observed in fibrillin-2 deficient animals.
    Matrix biology: journal of the International Society for Matrix Biology 02/2010; 29(5):357-68. DOI:10.1016/j.matbio.2010.02.006 · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transfer of part of the ulnar nerve to the musculocutaneous nerve, first described by Oberlin, can restore flexion of the elbow following brachial plexus injury. In this study we evaluated the additional benefits and effectiveness of quantitative electrodiagnosis to select a donor fascicle. Eight patients who had undergone transfer of a simple fascicle of the ulnar nerve to the motor branch of the musculocutaneous nerve were evaluated. In two early patients electrodiagnosis had not been used. In the remaining six patients, however, all fascicles of the ulnar nerve were separated and electrodiagnosis was performed after stimulation with a commercially available electromyographic system. In these procedures, recording electrodes were placed in flexor carpi ulnaris and the first dorsal interosseous. A single fascicle in the flexor carpi ulnaris in which a high amplitude had been recorded was selected as a donor and transferred to the musculocutaneous nerve. In the two patients who had not undergone electrodiagnosis, the recovery of biceps proved insufficient for normal use. Conversely, in the six patients in whom quantitative electrodiagnosis was used, elbow flexion recovered to an M4 level. Quantitative intra-operative electrodiagnosis is an effective method of selecting a favourable donor fascicle during the Oberlin procedure. Moreover, fascicles showing a high-amplitude in reading flexor carpi ulnaris are donor nerves that can restore normal elbow flexion without intrinsic loss.
    The Bone & Joint Journal 03/2011; 93(3):364-9. DOI:10.1302/0301-620X.93B3.24634 · 2.80 Impact Factor