Article

Prokaryotic diversity of arctic ice shelf microbial mats.

Department of Natural Resource Sciences, McGill University, Montreal, Canada.
Environmental Microbiology (Impact Factor: 6.24). 04/2008; 10(4):950-66. DOI: 10.1111/j.1462-2920.2007.01516.x
Source: PubMed

ABSTRACT The prokaryotic diversity and respiratory activity of microbial mat communities on the Markham Ice Shelf and Ward Hunt Ice Shelf in the Canadian high Arctic were analysed. All heterotrophic isolates and > 95% of bacterial 16S rRNA gene clone library sequences from both ice shelves grouped within the phyla Bacteroidetes, Proteobacteria and Actinobacteria. Clone library analyses showed that the bacterial communities were diverse and varied significantly between the two ice shelves, with the Markham library having a higher estimated diversity (Chao1 = 243; 105 operational taxonomic units observed in 189 clones) than the Ward Hunt library (Chao1 = 106; 52 operational taxonomic units observed in 128 clones). Archaeal 16S rRNA gene clone libraries from both ice shelves were dominated by a single Euryarchaeota sequence, which appears to represent a novel phylotype. Analyses of community activity by radiorespiration assays detected metabolism in mat samples from both ice shelves at temperatures as low as -10 degrees C. These findings provide the first insight into the prokaryotic biodiversity of Arctic ice shelf communities and underscore the importance of these cryo-ecosystems as a rich source of microbiota that are adapted to extreme cold.

0 Bookmarks
 · 
216 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria that utilize sunlight to supplement metabolic activity are now being described in a range of ecosystems. While it is likely that phototrophy provides an important competitive advantage, the contribution that these microorganisms make to the bioenergetics of polar marine ecosystems is unknown. In this minireview, we discuss recent advances in our understanding of phototrophic bacteria and highlight the need for future research.
    Biology 01/2012; 1(3):542-56.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate change is already altering the landscape at high latitudes. Permafrost is thawing, the growing season is starting earlier, and, as a result, certain regions in the Arctic may be subjected to an increased incidence of freeze-thaw events. The potential release of carbon and nutrients from soil microbial cells that have been lysed by freeze-thaw transitions could have significant impacts on the overall carbon balance of arctic ecosystems, and therefore on atmospheric CO2 concentrations. However, the impact of repeated freezing and thawing with the consequent growth and recrystallization of ice on microbial communities is still not well understood. Soil samples from three distinct sites, representing Canadian geographical low arctic, mid-arctic and high arctic soils were collected from Daring Lake, Alexandra Fjord and Cambridge Bay sampling sites, respectively. Laboratory-based experiments subjected the soils to multiple freeze-thaw cycles for 14 days based on field observations (0 °C to -10 °C for 12 h and -10 °C to 0 °C for 12 h) and the impact on the communities was assessed by phospholipid fatty acid (PLFA) methyl ester analysis and 16S ribosomal RNA gene sequencing. Both data sets indicated differences in composition and relative abundance between the three sites, as expected. However, there was also a strong variation within the two high latitude sites in the effects of the freeze-thaw treatment on individual PLFA and 16S-based phylotypes. These site-based heterogeneities suggest that the impact of climate change on soil microbial communities may not be predictable a priori; minor differential susceptibilities to freeze-thaw stress could lead to a "butterfly effect" as described by chaos theory, resulting in subsequent substantive differences in microbial assemblages. This perspectives article suggests that this is an unwelcome finding since it will make future predictions for the impact of on-going climate change on soil microbial communities in arctic regions all but impossible.
    Biology 01/2013; 2(1):356-77.

Full-text (2 Sources)

Download
68 Downloads
Available from
May 19, 2014