Article

SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes

MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA.
Neuron (Impact Factor: 15.98). 02/2008; 57(2):232-47. DOI: 10.1016/j.neuron.2007.12.023
Source: PubMed

ABSTRACT The molecular mechanisms controlling the development of distinct subtypes of neocortical projection neurons, and CNS neuronal diversity more broadly, are only now emerging. We report that the transcription factor SOX5 controls the sequential generation of distinct corticofugal neuron subtypes by preventing premature emergence of normally later-born corticofugal neurons. SOX5 loss-of-function causes striking overlap of the identities of the three principal sequentially born corticofugal neuron subtypes: subplate neurons, corticothalamic neurons, and subcerebral projection neurons. In Sox5(-/-) cortex, subplate neurons aberrantly develop molecular hallmarks and connectivity of subcerebral projection neurons; corticothalamic neurons are imprecisely differentiated, while differentiation of subcerebral projection neurons is accelerated. Gain-of-function analysis reinforces the critical role of SOX5 in controlling the sequential generation of corticofugal neurons--SOX5 overexpression at late stages of corticogenesis causes re-emergence of neurons with corticofugal features. These data indicate that SOX5 controls the timing of critical fate decisions during corticofugal neuron production and thus subtype-specific differentiation and neocortical neuron diversity.

Download full-text

Full-text

Available from: Eiman Azim, Jun 22, 2015
1 Follower
 · 
216 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise control of lineage-specific gene expression in the neural stem/progenitor cells is crucial for generation of the diversity of neuronal and glial cell types in the central nervous system (CNS). The mechanism underlying such gene regulation, however, is not fully elucidated. Here, we report that a 377 bp evolutionarily conserved DNA fragment (CR5), located approximately 32 kbp upstream of Olig2 transcription start site, acts as a cis-regulator for gene expression in the development of the neonatal forebrain. CR5 is active in a time-specific and brain region-restricted manner. CR5 activity is not detected in the embryonic stage, but it is exclusively in a subset of Sox5+ cells in the neonatal ventral forebrain. Furthermore, we show that Sox5 binding motif in CR5 is important for this cell-specific gene regulatory activity; mutation of Sox5 binding motif in CR5 alters reporter gene expression with different cellular composition. Together, our study provides new insights into the regulation of cell-specific gene expression during CNS development.
    Developmental Biology 09/2014; 393(1). DOI:10.1016/j.ydbio.2014.06.010 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.
    Neuroscience Research 07/2014; 86. DOI:10.1016/j.neures.2014.07.002 · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cerebral cortex comprises over three quarters of the brain, and serves as structural basis for the sophisticated perceptual and cognitive functions. It develops from common multipotent neural stem cells (NSCs) that line the neural tube. Development of the NSCs encompasses sequential phases of progenitor expansion, neurogenesis, and gliogenesis along with the progression of developmental stages. Interestingly, NSCs steadfastly march through all of these phases and give rise to specific neural cell types in a temporally defined and highly predictable manner. Herein, we delineate the intrinsic and extrinsic factors that dictate the progression and tempo of NSC differentiation during cerebral cortex development, and how epigenetic modifications contribute to the dynamic properties of NSCs.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 03/2013; DOI:10.1016/j.ijdevneu.2013.02.006 · 2.92 Impact Factor