The shear modulus of the human vocal fold in a transverse direction.

Department of Computer Science and Engineering, DeMontfort University, Leicester, United Kingdom.
Journal of voice: official journal of the Voice Foundation (Impact Factor: 0.95). 02/2008; 23(2):151-5. DOI: 10.1016/j.jvoice.2007.09.006
Source: PubMed

ABSTRACT The aim of this study was to measure the shear modulus of the vocal fold in a human hemilarynx, such that the data can be related to direction of applied stress and anatomical context. Dynamic spring rate data were collected using a modified linear skin rheometer using human hemilarynges, and converted to estimated shear modulus via application of a simple shear model. The measurement probe was attached to the epithelial layer of the vocal fold cover using suction. A sinusoidal force of 3g was applied to the epithelium, and the resultant displacement logged at a rate of 1kHz. Force measurement accuracy was 20microg and position measurement accuracy was 4microm. The force was applied in a transverse direction at the midmembranous point between the vocal process and the anterior commissure. The shear modulus of the three female vocal folds ranged from 814 to 1232Pa. The shear modulus of the three male vocal folds ranged from 1021 to 1796Pa. These data demonstrate that it is possible to obtain estimates for the shear modulus of the vocal fold while preserving anatomical context. The modulus values reported here are higher than those reported using parallel plate rheometry. This is to be expected as the tissue is attached to surrounding structures, and is under natural tension.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human vocal folds undergo self-sustaining oscillations during phonation. The phonatory functions of the vocal folds depend on their mechanical properties. This article presents a review of various mechanical testing methods and constitutive models that are currently in use for the characterization of mechanical properties of the vocal fold tissue. Special attention is given to tissue deformation under mechanical loading at different length scales. The wide range of elastic modulus values reported in the literature is discussed and justified using a multiscale perspective. This study aims to provide a better understanding of mechanical properties that can be used to build computational simulations of vocal fold vibrations and pave the way for the design of biomaterials to restore biomechanical properties in damaged vocal folds.
    Journal of voice: official journal of the Voice Foundation 07/2014; · 0.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects’ vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 to 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI.
    Journal of biomechanics 01/2013; · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives/Hypothesis Characterizing the vertical stiffness gradient that exists between the superior and inferior aspects of the medial surface of the vocal fold. Characterization of this stiffness gradient could elucidate the mechanism behind the divergent glottal shape observed during closing. Study Design Basic science. Methods Indentation testing of the folds was done in a canine model. Stress-strain curves are generated using a customized load-cell and the differential Young's modulus is calculated as a function of strain. Results Results from 11 larynges show that stress increases as a function of strain more rapidly in the inferior aspect of the fold. The calculations for local Young's modulus show that at high strain values, a stiffness gradient is formed between the superior and inferior aspects of the fold. Conclusions For small strain values, which are observed at low subglottal pressures, the stiffness of the tissue is similar in both the superior and inferior aspects of the vocal fold. Consequently, the lateral force that is applied by the glottal flow at both aspects results in almost identical displacements, yielding no divergence angle. Conversely, at higher strain values, which are measured in high subglottal pressure, the inferior aspect of the vocal fold is much stiffer than the superior edge; thus, any lateral force that is applied at both aspects will result in a much greater displacement of the superior edge, yielding a large divergence angle. The increased stiffness observed at the inferior edge could be due to the proximity of the conus elasticus.
    Journal of Voice. 05/2014;


Available from
May 19, 2014