Article

Peroxisome proliferator-activated receptor gamma and retinoid X receptor transcription factors are released from activated human platelets and shed in microparticles

University of Rochester Medical Center, Environmental Medicine, Rochester, New York 14642, USA .
Thrombosis and Haemostasis (Impact Factor: 5.76). 02/2008; 99(1):86-95. DOI: 10.1160/TH07-05-0328
Source: PubMed

ABSTRACT Peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands are important regulators of lipid metabolism, inflammation, and diabetes. We previously demonstrated that anucleate human platelets express the transcription factor PPARgamma and that PPARgamma ligands blunt platelet activation. To further understand the nature of PPARgamma in platelets, we determined the platelet PPARgamma isoform(s) and investigated the fate of PPARgamma following platelet activation. Our studies demonstrated that human platelets contain only the PPARgamma1 isoform and after activation with thrombin, TRAP, ADP or collagen PPARgamma is released from internal stores. PPARgamma release was blocked by a cytoskeleton inhibitor, Latrunculin A. Platelet-released PPARgamma was complexed with the retinoid X receptor (RXR) and retained its ability to bind DNA. Interestingly, the released PPARgamma and RXR were microparticle associated and the released PPARgamma/RXR complex retained DNA-binding ability. Additionally, a monocytic cell line, THP-1, is capable of internalizing PMPs. Further investigation following treatment of these cells with the PPARgamma agonist, rosiglitazone and PMPs revealed a possible transcellular mechanism to attenuate THP-1 activation. These new findings are the first to demonstrate transcription factor release from platelets, revealing the complex spectrum of proteins expressed and expelled from platelets, and suggests that platelet PPARgamma has an undiscovered role in human biology.

0 Bookmarks
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelet transfusion has been a vital therapeutic approach in patients with hematologic malignancies for close to half a century. Randomized trials show that prophylactic platelet transfusions mitigate bleeding in patients with acute myeloid leukemia. However, even with prophylactic transfusions, as many as 75% of patients, experience hemorrhage. While platelet transfusion efficacy is modest, questions and concerns have arisen about the risks of platelet transfusion therapy. The acknowledged serious risks of platelet transfusion include viral transmission, bacterial sepsis, and acute lung injury. Less serious adverse effects include allergic and non-hemolytic febrile reactions. Rare hemolytic reactions have occurred due to a common policy of transfusing without regard to ABO type. In the last decade or so, new concerns have arisen; platelet-derived lipids are implicated in transfusion-related acute lung injury after transfusion. With the recognition that platelets are immune cells came the discoveries that supernatant IL-6, IL-27 sCD40L, and OX40L are closely linked to febrile reactions and sCD40L with acute lung injury. Platelet transfusions are pro-inflammatory, and may be pro-thrombotic. Anti-A and anti-B can bind to incompatible recipient or donor platelets and soluble antigens, impair hemostasis and thus increase bleeding. Finally, stored platelet supernatants contain biological mediators such as VEGF and TGF-β1 that may compromise the host versus tumor response. This is particularly of concern in patients receiving many platelet transfusions, as for acute leukemia. New evidence suggests that removing stored supernatant will improve clinical outcomes. This new view of platelets as pro-inflammatory and immunomodulatory agents suggests that innovative approaches to improving platelet storage and pre-transfusion manipulations to reduce toxicity could substantially improve the efficacy and safety of this long-employed therapy.
    Frontiers in Immunology 01/2015; 6:28. DOI:10.3389/fimmu.2015.00028
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cells and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as "cellular fragments" is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryocytes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and non-genomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB) family of proteins and peroxisome proliferator-activated receptor gamma (PPARγ). In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the non-genomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and hemostatic functions.
    Frontiers in Immunology 01/2015; 6:48. DOI:10.3389/fimmu.2015.00048
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microparticles (MPs) are small membrane vesicles that are released from many different cell types by exocytic budding of the plasma membrane in response to cellular activation or apoptosis. MPs may also be involved in clinical diseases because they express phospholipids, which function as procoagulants. Although flow cytometry is the most widely used method for studying MPs, some novel assays, such as tissue factor-dependent procoagulant assay or the ELISA method, have been reported. However, the use of quantification of MP as a clinical tool is still controversial. Elevated platelet-derived MP, endothelial cell-derived MP, and monocyte-derived MP concentrations are documented in almost all thrombotic diseases occurring in venous and arterial beds. However, the significance of MPs in various clinical conditions remains controversial. An example of this controversy is that it is unknown if MPs found in peripheral blood vessels cause thrombosis or whether they are the result of thrombosis. Numerous studies have shown that not only the quantity, but also the cellular origin and composition of circulating MPs, are dependent on the type of disease, the disease state, and medical treatment. Additionally, many different functions have been attributed to MPs. Therefore, the number and type of clinical disorders associated with elevated MPs are currently increasing. However, MPs were initially thought to be small particles with procoagulant activity. Taken together, our review suggests that MPs may be a useful biomarker to identify thrombosis.
    12/2015; 3(1):2. DOI:10.1186/s40560-014-0066-z

Full-text (2 Sources)

Download
7 Downloads
Available from
May 22, 2014