Expression of chemokine/cytokine genes and immune cell recruitment following the instillation of Mycobacterium bovis, bacillus Calmette–Guérin or Lactobacillus rhamnosus strain GG in the healthy murine bladder

Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore.
Immunology (Impact Factor: 3.8). 08/2008; 124(3):419-27. DOI: 10.1111/j.1365-2567.2007.02792.x
Source: PubMed


Mycobacterium bovis, bacillus Calmette-Guérin (BCG) is the current gold standard for bladder cancer therapy. In this study a profile of the gene expression changes that occur after BCG instillation in the bladders of healthy mice was produced and compared to the type of immune cells recruited into the bladder. A similar comparison was made for Lactobacillus rhamnosus strain GG (LGG) instillations in healthy mice to determine its potential in the immunotherapy of bladder cancer. Mice were given six weekly instillations and were killed after the fourth, fifth and sixth instillations of BCG or LGG. Their bladders were harvested for chemokine/cytokine messenger RNA analysis using an array as well as semi-quantitative reverse transcription-polymerase chain reaction. In a second set of mice both the bladder and draining lymph nodes were harvested for the analysis of immune cells. BCG significantly upregulated genes for T helper type 1 (Th1) chemokines: Cxcl2, Cxcl9, Cxcl10, Xcl1; and increased the expression of Th1/Th2 chemokines: RANTES, Ccl6 and Ccl7; Th1 polarizing cytokines: Il1beta and Tnfa; and Fcgammar1 and iNOS as early as after four weekly instillations. Most of these genes remained highly expressed after 6 weeks. In contrast, LGG transiently induced Cxcl10, Il16, Fcepsilonr1 and Il1r2. Despite these findings, LGG instillation induced the recruitment of natural killer cells into the bladder and draining lymph nodes, as was observed for BCG instillation.

Download full-text


Available from: Ratha Mahendran, Dec 18, 2013
8 Reads
  • Source
    • "The lowest limit of detection is C T = 35. Semiquantitative PCR was performed as described before [19] for 35 cycles. The PCR products were separated on agarose gels, and band intensities were quantified with Gene Tools analysis software (SynGene, Cambridge, England) and normalized against GAPDH or beta actin and expressed as relative quantitation (RQ). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to monitor changes in the expression of immune-related genes in the bladder after tumor implantation. Mice were orthotopically implanted with MB49-PSA cells (C57BL/6 mice) on day 1 and terminated on days 7, 14, 21, and 28. Another mouse model (MBT-2/C3H mice) was examined at day 7. Gene expression analysis was performed using a TaqMan Low Density Mouse Immune Panel (Applied Biosystems, USA) on RNA extracted from the bladders. Selected genes were reconfirmed by real-time PCR analysis and RT-PCR on the mRNA from other animals. Immune suppressive (IL13, IL1β, PTGS2, NOS2, IL10, CTLA4, and CCL22) and immune stimulatory genes (CSF2, GZMB, IFNγ, CXCL10, TNFα, CD80, IL12a, and IL6) and AGTR2 were increased by day 7. By day 28, IL10, CCL2, CCL5, CXCL11, CTLA4, GZMB, IFNγ, CSF2, and IL6 were significantly increased. Therapeutic strategies involving TH1 induction and TH2 dampening may improve responses to immunotherapy.
    Clinical and Developmental Immunology 10/2011; 2011(1740-2522):865684. DOI:10.1155/2011/865684 · 2.93 Impact Factor
  • Source
    • "To this end, CXCR3 expression and CXCL10-signaling by sensory neurons correlate with the maintenance phase of persistent pain [19]. CXCL10 expression has also been shown to be elevated in bladders following cancer therapy and febrile urinary infection [20,21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations in serum CXCR3 ligand levels were examined in interstitial cystitis (IC) patients; similar expression patterns in serum as well as CXCR3, CXCR3 ligands, and cytokines expressed by peripheral and local leukocyte subpopulations were characterized during cyclophosphamide (CYP)-induced acute cystitis in mice. Serum levels of monokine-induced by interferon-gamma (IFN-gamma) (MIG/CXCL9), IFN-gamma-inducible protein-10 (IP-10/CXCL10), and IFN-gamma-inducible T cell alpha chemoattractant (I-TAC/CXCL11) were elevated in patients with IC. These clinical features closely correlated with CYP-induced cystitis in mice. Serum levels of these CXCR3 ligands and local T helper type 1 (Th1) cytokines were also increased. We demonstrate that CXCR3 as well as CXCL9, CXCL10 and CXCL11 mRNA were significantly expressed by urinary bladder lymphocytes, while CXCR3 and CXCL9 transcripts were significantly expressed by iliac lymph node leukocytes following CYP treatment. We also show that the number of CD4+ T cells, mast cells, natural killer (NK) cells, and NKT cells were increased at systemic (spleen) and mucosal (urinary bladder and iliac lymph nodes) sites, following CYP-induced cystitis in mice. Importantly, CXCL10 blockade attenuated these increases caused by CYP. Antibody (Ab)-mediated inhibition of the most abundant serum CXCR3 ligand, CXCL10, in mice decreased the local production of CXCR3 ligands as well as Th1 cytokines expressed by local leukocytes, and lowered corresponding serum levels to reduce the severity of CYP-induced cystitis. The present study is among the first to demonstrate some of the cellular and molecular mechanisms of chemokines in cystitis and may represent new drug target for this disease.
    Journal of Immune Based Therapies and Vaccines 02/2008; 6(1):6. DOI:10.1186/1476-8518-6-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: CXCL10 production is a critical step in limiting mycobacterial infection. Although induction of this chemokine by mycobacteria in epithelial cells has been reported, it is still unclear how CXCL10 is regulated in Mycobacterium bovis BCG-infected epithelial cells. In this study, we demonstrate that phosphatidylinoditol 3-kinase (PI3K)/Akt and the nuclear factor kB (NF-kB) signaling pathways play an important role in CXCL10 expression at the protein and mRNA level in A549 cells. We demonstrate that treatment of A549 cells with LY294002 and wortmannin, two PI3K inhibitors, inhibited M. bovis BCG-induced CXCL10 expression. In addition, treatment of A549 cells with an Akt inhibitor significantly blocked M. bovis BCG-induced CXCL10 production. Moreover, our data show that treatment of epithelial cells with CAPE, BAY 11-7082, and PDTC three selective inhibitors of NF-kB, significantly reduced the effect of M. bovis BCG on induced CXCL10 mRNA expression (74%, 69% and 83% inhibition by 8microM CAPE, 10microM BAY 11-7082 and 3microM PDTC as assessed by real-time PCR, respectively). In accordance with the gene induction, the production of CXCL10 was also significantly reduced by these inhibitors. Finally, the inhibition of PI3K affect NF-kB activation in M. bovis BCG-infected cells, indicating that PI3K activity is required for the M. bovis BCG-induced activation of NF-kB. The functional association between PI3K/Akt and NF-kB demonstrates another mechanism in the regulation of M. bovis BCG-induced CXCL10 in A549 cells.
    Cellular Immunology 02/2009; 256(1-2):12-8. DOI:10.1016/j.cellimm.2008.12.002 · 1.92 Impact Factor
Show more