Bhattacharjee YNeuroscience. Shell shock revisited: solving the puzzle of blast trauma. Science 319:406-408

Science (Impact Factor: 33.61). 02/2008; 319(5862):406-8. DOI: 10.1126/science.319.5862.406
Source: PubMed
15 Reads
  • Source
    • "Current Explosive mechanisms [improvised explosive devices (IEDs), landmines, and rocket-propelled grenades (RPGs)] are believed to account for 56–78% of Operation Enduring Freedom (OEF), Operation Iraqi Freedom (OIF), and Operation New Dawn (OND) related injuries (3, 4). This has led to labeling the blast-induced TBI (bTBI) as the signature brain injury for combat troops in today’s military (5, 6). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the "distinct" but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.
    Frontiers in Neurology 11/2013; 4:186. DOI:10.3389/fneur.2013.00186
  • Source
    • "Blast-induced traumatic brain injury (bTBI) has dramatically increased in combat troops and civilians due to improvements in explosive devices employed in military conflicts and terrorist activities [1-3]. Blast exposure primarily affects gas-containing organs, such as the middle ear, lung, and gastrointestinal tract [4-9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Blast-induced traumatic brain injury has dramatically increased in combat troops in today's military operations. We previously reported that antioxidant treatment can provide protection to the peripheral auditory end organ, the cochlea. In the present study, we examined biomarker expression in the brains of rats at different time points (3 hours to 21 days) after three successive 14 psi blast overpressure exposures to evaluate antioxidant treatment effects on blast-induced brain injury. Rats in the treatment groups received a combination of antioxidants (2,4-disulfonyl α-phenyl tertiary butyl nitrone and N-acetylcysteine) one hour after blast exposure and then twice a day for the following two days. The biomarkers examined included an oxidative stress marker (4-hydroxy-2-nonenal, 4-HNE), an immediate early gene (c-fos), a neural injury marker (glial fibrillary acidic protein, GFAP) and two axonal injury markers [amyloid beta (A4) precursor protein, APP, and 68 kDa neurofilament, NF-68]. The results demonstrate that blast exposure induced or up-regulated the following: 4-HNE production in the dorsal hippocampus commissure and the forceps major corpus callosum near the lateral ventricle; c-fos and GFAP expression in most regions of the brain, including the retrosplenial cortex, the hippocampus, the cochlear nucleus, and the inferior colliculus; and NF-68 and APP expression in the hippocampus, the auditory cortex, and the medial geniculate nucleus (MGN). Antioxidant treatment reduced the following: 4-HNE in the hippocampus and the forceps major corpus callosum, c-fos expression in the retrosplenial cortex, GFAP expression in the dorsal cochlear nucleus (DCN), and APP and NF-68 expression in the hippocampus, auditory cortex, and MGN. This preliminary study indicates that antioxidant treatment may provide therapeutic protection to the central auditory pathway (the DCN and MGN) and the non-auditory central nervous system (hippocampus and retrosplenial cortex), suggesting that these compounds have the potential to simultaneously treat blast-induced injuries in the brain and auditory system.
    PLoS ONE 11/2013; 8(11):e80138. DOI:10.1371/journal.pone.0080138 · 3.23 Impact Factor
  • Source
    • "Recent reports showed that 64% of war injuries are caused by blasts [1,2]. Traumatic brain injury (TBI) is so prevalent that it has been described as the ‘signature wound of the war on terror’ [3], and has been the focus of many studies. As personal ballistic protection of the head and torso improves for soldiers, increasing numbers of injuries to unprotected areas such as the face and eyes may be expected [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of primary blast exposure on the brain is widely reported but its effects on the eye remains unclear. Here, we aim to examine the effects of primary blast exposure on the retina. Adult male Sprague--Dawley rats were exposed to primary blast high and low injury and sacrificed at 24 h, 72 h, and 2 weeks post injury. The retina was subjected to western analysis for vascular endothelial growth factor (VEGF), aquaporin-4 (AQP4), glutamine synthethase (GS), inducible nitric oxide synthase (NOS), endothelial NOS, neuronal NOS and nestin expression; ELISA analysis for cytokines and chemokines; and immunofluorescence for glial fibrillary acidic protein (GFAP)/VEGF, GFAP/AQP4, GFAP/nestin, GS/AQP4, lectin/iNOS, and TUNEL. The retina showed a blast severity-dependent increase in VEGF, iNOS, eNOS, nNOS, and nestin expression with corresponding increases in inflammatory cytokines and chemokines. There was also increased AQP4 expression and retinal thickness after primary blast exposure that was severity-dependent. Finally, a significant increase in TUNEL+ and Caspase-3+ cells was observed. These changes were observed at 24 h post-injury and sustained up to 2 weeks post injury. Primary blast resulted in severity-dependent pathological changes in the retina, manifested by the increased expression of a variety of proteins involved in inflammation, edema, and apoptosis. These changes were observed immediately after blast exposure and sustained up to 2 weeks suggesting acute and chronic injury mechanisms. These changes were most obvious in the astrocytes and Muller cells and suggest important roles for these cells in retina pathophysiology after blast.
    Journal of Neuroinflammation 07/2013; 10(1):79. DOI:10.1186/1742-2094-10-79 · 5.41 Impact Factor
Show more

Similar Publications