Article

Mitral Regurgitation Augments Post-Myocardial Infarction Remodeling

Cardiac Ultrasound Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
Journal of the American College of Cardiology (Impact Factor: 15.34). 02/2008; 51(4):476-86. DOI: 10.1016/j.jacc.2007.07.093
Source: PubMed

ABSTRACT We examined whether mitral regurgitation (MR) augments post-myocardial infarction (MI) remodeling.
MR doubles mortality after MI, but its additive contribution to left ventricular (LV) remodeling is debated and has not been addressed in a controlled fashion.
Apical MIs were created in 12 sheep, and 6 had an LV-to-left atrial shunt implanted, consistently producing regurgitant fractions of approximately 30%. The groups were compared at baseline, 1, and 3 months.
Left ventricular end-systolic volume progressively increased by 190% with MR versus 90% without MR (p < 0.02). Pre-load-recruitable stroke work declined by 82 +/- 13% versus 25 +/- 16% (p < 0.01) with MR, with decreased remote-zone sarcoplasmic reticulum Ca(2+)-ATPase levels (0.56 +/- 0.03 vs. 0.76 +/- 0.02, p < 0.001), and decreased isolated myocyte contractility. In remote zones, pro-hypertrophic Akt and gp130 were upregulated in both groups at 1 month, but significantly lower and below baseline in the MR group at 3 months. Pro-apoptotic caspase 3 remained high in both groups. Matrix metalloproteinase (MMP)-13 and membrane-type MMP-1 were increased in remote zones of MR versus infarct-only animals at 1 month, then fell below baseline. The MMP tissue inhibitors rose from baseline to 3 months in all animals, rising higher in the MI + MR-group border zone.
In this controlled model, moderate MR worsens post-MI remodeling, with reduced contractility. Pro-hypertrophic pathways are initially upregulated but subsequently fall below infarct-only levels and baseline; with sustained caspase 3 elevation, transformation to a failure phenotype occurs. Extracellular matrix turnover increases in MR animals. Therefore, MR can precipitate an earlier onset of dilated heart failure.

Download full-text

Full-text

Available from: Dan Gilon, Jun 19, 2014
0 Followers
 · 
174 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological left ventricle (LV) hypertrophy (LVH) results in reactive and replacement fibrosis. Volume overload LVH (VOH) is less profibrotic than pressure overload LVH (POH). Studies attribute subendocardial fibrosis in POH to ischaemia, and reduced fibrosis in VOH to collagen degradation favouring dilatation. However, the mechanical origin of the relative lack of fibrosis in VOH is incompletely understood. We hypothesized that reduced ischaemia propensity in VOH compared to POH accounted for the reduced replacement fibrosis, along with reduced reactive fibrosis. Rats with POH (ascending aortic banding) evolved into either compensated-concentric POH (POH-CLVH) or dilated cardiomyopathy (POH-DCM); they were compared to VOH (aorta-caval fistula). We quantified LV fibrosis, structural and haemodynamic factors of ischaemia propensity, and the activation of profibrotic pathways. Fibrosis in POH-DCM was severe, subendocardial and subepicardial, in contrast with subendocardial fibrosis in POH-CLVH and nearly no fibrosis in VOH. The propensity for ischaemia was more important in POH versus VOH, explaining different patterns of replacement fibrosis. LV collagen synthesis and maturation, and matrix metalloproteinase-2 expression, were more important in POH. The angiotensin II-transforming growth-factor axis was enhanced in POH, and connective tissue growth factor (CTGF) was overexpressed in all types of LVH. LV resistin expression was markedly elevated in POH, mildly elevated in VOH and independently reflected chronic ischaemic injury after myocardial infarction. In vitro, resistin is induced by angiotensin II and induces CTGF in cardiomyocytes. Based on these findings, we conclude that a reduced ischaemia propensity and attenuated upstream reactive fibrotic pathways account for the attenuated fibrosis in VOH versus POH.
    The Journal of Physiology 11/2013; 591(21). DOI:10.1113/jphysiol.2013.258731 · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The volume overload of isolated mitral regurgitation (MR) in the dog results in left ventricular (LV) dilatation and interstitial collagen loss. To better understand the mechanism of collagen loss, we performed a gene array and overlaid regulated genes into ingenuity pathway analysis. Gene arrays from LV tissue were compared in 4 dogs before and 4 months after MR. Cine-magnetic resonance-derived LV end-diastolic volume increased 2-fold (P=0.005), and LV ejection fraction increased from 41% to 53% (P<0.007). LV interstitial collagen decreased 40% (P<0.05) compared with controls, and replacement collagen was in short strands and in disarray. Ingenuity pathway analysis identified Marfan syndrome, aneurysm formation, LV dilatation, and myocardial infarction, all of which have extracellular matrix protein defects and/or degradation. Matrix metalloproteinase-1 and -9 mRNA increased 5- (P=0.01) and 10-fold (P=0.003), whereas collagen I did not change and collagen III mRNA increased 1.5-fold (P=0.02). However, noncollagen genes important in extracellular matrix structure were significantly downregulated, including decorin, fibulin 1, and fibrillin 1. In addition, connective tissue growth factor and plasminogen activator inhibitor were downregulated, along with multiple genes in the transforming growth factor-beta signaling pathway, resulting in decreased LV transforming growth factor-beta1 activity (P=0.03). LV collagen loss in isolated, compensated MR is chiefly due to posttranslational processing and degradation. The downregulation of multiple noncollagen genes important in global extracellular matrix structure, coupled with decreased expression of multiple profibrotic factors, explains the failure to replace interstitial collagen in the MR heart.
    Circulation 04/2009; 119(15):2086-95. DOI:10.1161/CIRCULATIONAHA.108.826230 · 14.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to examine the chronic effects of polyvinyl-alcohol (PVA) injection on mitral regurgitation (MR) reduction, mitral valve geometry, and left ventricular (LV) remodeling in a chronic ischemic MR sheep model. Previous studies have demonstrated acute efficacy of PVA hydrogel polymer injection into infarcted myocardium underlying the papillary muscle to relieve MR by papillary muscle repositioning. However, the chronic efficacy of PVA injection in the chronic infarction setting remains unclear. Sixteen sheep developed chronic MR 8 weeks after induced inferoposterior myocardial infarction. Ten consecutive sheep underwent PVA injection (PVA group) and 6 sheep served as control subjects with saline injection. Epicardial 2-/3-dimensional echocardiography was performed at the baseline, chronic MR (pre-injection), and sacrifice (8 weeks after injection) stages. Both groups were comparable at the baseline and chronic MR stages. At sacrifice, MR decreased from moderate to trace or mild (vena contracta: 0.17 ± 0.08 vs. 0.56 ± 0.10 cm, p < 0.001) in the PVA group but progressed to moderate to severe in the control group. End-systolic and -diastolic volumes remained stable in the PVA group but increased significantly in the control group (both p < 0.05). At sacrifice, compared with the control group, the PVA group had significantly less left ventricular remodeling (end-systolic volume: 41.1 ± 10.4 vs. 55.9 ± 12.4 ml, p < 0.05), lower MR severity (vena contracta: 0.17 ± 0.08 vs. 0.60 ± 0.14 cm, p < 0.01), and favorable changes in mitral valve geometry. Polymer injection in a chronic ischemic MR model results in persistent reduction of MR and attenuation of continued left ventricular remodeling over 8 weeks of follow-up. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.