Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation.

Department of Community and Family Medicine, Dartmouth Medical School, and the Norris Cotton Cancer Center, Lebanon, NH 03756, USA.
Epidemiology (Impact Factor: 6.18). 04/2008; 19(2):251-7. DOI: 10.1097/EDE.0b013e318163152a
Source: PubMed

ABSTRACT Animal studies suggest that prenatal exposure to the synthetic estrogen diethylstilbestrol (DES) causes epigenetic changes that may be transmitted to the next generation. Specifically, these studies show an elevated incidence of reproductive tumors in the female offspring of prenatally-exposed mice.
We assessed cancer and benign pathology diagnoses occurring in the offspring of women whose prenatal exposure to DES (or lack of exposure) was verified by medical record. Our data arose from 2 sources: the mothers' reports of cancers occurring in 8216 sons and daughters, and pathology-confirmed cancers and benign diagnoses self-reported by a subset of 793 daughters.
Although statistical power is limited, our data are consistent with no overall increase of cancer in the sons or daughters of women exposed in utero to DES. Based on pathology-confirmed diagnoses reported by the daughters, we saw no association between DES and risk of benign breast disease or reproductive tract conditions. Based on 3 cases, the incidence of ovarian cancer was higher than expected in the daughters of women exposed prenatally to DES.
Our data do not support an overall increase of cancer risk in the sons or daughters of women exposed prenatally to DES, but the number of ovarian cancer cases was greater than expected. While preliminary, this finding supports continued monitoring of these daughters.

  • [Show abstract] [Hide abstract]
    ABSTRACT: All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses.
    Integrative and Comparative Biology 05/2014; · 2.97 Impact Factor
  • Source
    Environmental Health Perspectives 10/2013; 121(10):A298-303. · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The idea that susceptibility to breast cancer is determined not only through inherited germline mutations but also by epigenetic changes induced by alterations in hormonal environment during fetal development is gaining increasing support. Using findings obtained in human and animal studies, this review addresses the mechanisms that may explain why daughters of mothers who took synthetic estrogen diethylstilbestrol (DES) during pregnancy have two times higher breast cancer risk than women who were not exposed to it. The mechanisms likely involve epigenetic alterations, such as increased DNA methylation and modifications in histones and microRNA expression.Further, these alterations may target genes that regulate stem cells and prevent differentiation of their daughter cells. Recent findings in a preclinical model suggest that not only are women exposed to DES in utero at an increased risk of developing breast cancer, but this risk may extend to their daughters and granddaughters as well. It is critical, therefore, to determine if the increased risk is driven by epigenetic alterations in genes that increase susceptibility to breast cancer and if these alterations are reversible.
    Breast cancer research: BCR 01/2014; 16(2):208. · 5.88 Impact Factor