Tubulin modifications and their cellular functions.

Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Current Opinion in Cell Biology (Impact Factor: 8.74). 03/2008; 20(1):71-6. DOI: 10.1016/
Source: PubMed

ABSTRACT All microtubules are built from a basic alpha/beta-tubulin building block, yet subpopulations of microtubules can be differentially marked by a number of post-translational modifications. These modifications, conserved throughout evolution, are thought to act individually or in combination to control specific microtubule-based functions, analogous to how histone modifications regulate chromatin functions. Here we review recent studies demonstrating that tubulin modifications influence microtubule-associated proteins such as severing proteins, plus-end tracking proteins, and molecular motors. In this way, tubulin modifications play an important role in regulating microtubule properties, such as stability and structure, as well as microtubule-based functions, such as ciliary beating, cell division, and intracellular trafficking.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Kinesin superfamily proteins (KIFs) largely serve as molecular motors on the microtubule system and transport various cellular proteins, macromolecules, and organelles. These transports are fundamental to cellular logistics, and at times, they directly modulate signal transduction by altering the semantics of informational molecules. In this review, we will summarize recent approaches to the regulation of the transport destinations and to the physiological relevance of the role of these proteins in neuroscience, ciliary functions, and metabolic diseases. Understanding these burning questions will be essential in establishing a new paradigm of cellular functions and disease pathogenesis. Copyright © 2015. Published by Elsevier Inc.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic failure and neurofibrillary degeneration are two major neuropathological substrates of cognitive dysfunction in Alzheimer's disease (AD). Only a few studies have demonstrated a direct relationship between these two AD hallmarks. To investigate tau mediated synaptic injury we used rat model of tauopathy that develops extensive neurofibrillary pathology in the cortex. Using fractionation of cortical synapses, we identified an increase in endogenous rat tau isoforms in presynaptic compartment, and their mis-sorting to the postsynaptic density (PSD). Truncated transgenic tau was distributed in both compartments exhibiting specific phospho-pattern that was characteristic for each synaptic compartment. In the presynaptic compartment, truncated tau was associated with impairment of dynamic stability of microtubules which could be responsible for reduction of synaptic vesicles. In the PSD, truncated tau lowered the levels of neurofilaments. Truncated tau also significantly decreased the synaptic levels of Aβ40 but not Aβ42. These data show that truncated tau differentially deregulates synaptic proteome in pre-and postsynaptic compartments. Importantly, we show that alteration of Aβ can arise downstream of truncated tau pathology.
    Frontiers in Cellular Neuroscience 02/2015; 9(24). DOI:10.3389/fncel.2015.00024 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules are polar cytoskeletal filaments assembled from head-to-tail and comprised of lateral associations of α/β-tubulin heterodimers that play key role in various cellular processes. Because of their vital role in mitosis and various other cellular processes, microtubules have been attractive targets for several disease conditions and especially for cancer. Antitubulin is the most successful class of antimitotic agents in cancer chemotherapeutics. The target recognition of antimitotic agents as a ligand is not much explored so far. However, 3,4,5-trimethoxyphenyl fragment has been much highlighted and discussed in such type of interactions. In this review, some of the most important naturally occurring antimitotic agents and their interactions with microtubules are discussed with a special emphasis on the role of 3,4,5-trimethoxyphenyl unit. At last, some emerging naturally occurring antimitotic agents have also been tabulated.
    Bioorganic & Medicinal Chemistry 12/2014; 23(3). DOI:10.1016/j.bmc.2014.12.027 · 2.95 Impact Factor


Available from