Article

SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway

National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University and Chinese Academy of Medical Sciences, Beijing 100005, China.
Cell Research (Impact Factor: 11.98). 03/2008; 18(2):290-301. DOI: 10.1038/cr.2008.15
Source: PubMed

ABSTRACT While severe acute respiratory syndrome coronavirus (SARS-CoV) was initially thought to enter cells through direct fusion with the plasma membrane, more recent evidence suggests that virus entry may also involve endocytosis. We have found that SARS-CoV enters cells via pH- and receptor-dependent endocytosis. Treatment of cells with either SARS-CoV spike protein or spike-bearing pseudoviruses resulted in the translocation of angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV, from the cell surface to endosomes. In addition, the spike-bearing pseudoviruses and early endosome antigen 1 were found to colocalize in endosomes. Further analyses using specific endocytic pathway inhibitors and dominant-negative Eps15 as well as caveolin-1 colocalization study suggested that virus entry was mediated by a clathrin- and caveolae-independent mechanism. Moreover, cholesterol- and sphingolipid-rich lipid raft microdomains in the plasma membrane, which have been shown to act as platforms for many physiological signaling pathways, were shown to be involved in virus entry. Endocytic entry of SARS-CoV may expand the cellular range of SARS-CoV infection, and our findings here contribute to the understanding of SARS-CoV pathogenesis, providing new information for anti-viral drug research.

Download full-text

Full-text

Available from: Yanli Zhang, Jul 06, 2015
0 Followers
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The entry of two dengue virus (DENV) serotypes into Vero cells was analysed using biochemical inhibitors, dominant negative mutants of cellular proteins involved in endocytic pathways, fluorescence microscopy and infectivity determinations. By treatment with dansylcadaverine and chlorpromazine and overexpression of a dominant negative form of the Eps15 protein, a clathrin-mediated endocytosis for productive DENV-1 internalization into Vero cells was demonstrated whereas the infectious entry of DENV-2 in the same cell system was independent of clathrin. Treatment with the inhibitors nystatin and methyl-beta-cyclodextrin, as well as transfection of Vero cells with dominant negative caveolin-1, had no effect on DENV-2 virus infection. It was also shown, by using the K44A mutant and the inhibitor dynasore, that dynamin was required for DENV-2 entry. Consequently, the infectious entry of DENV-2 into Vero cells occurs by a non-classical endocytic pathway independent of clathrin, caveolae and lipid rafts, but dependent on dynamin. By contrast, DENV-2 entry into A549 cells was clathrin-dependent, as previously reported in HeLa, C6/36 and BS-C-1 cells. Our results conclusively show, for the first time, a differential mode of infective entry for DENV-1 and DENV-2 into a common host cell, Vero cells, as well as alternative entry pathways for a given serotype, DENV-2, into different types of cells.
    Cellular Microbiology 07/2009; 11(10):1533-49. DOI:10.1111/j.1462-5822.2009.01345.x · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date, the entry pathway and replication mechanisms for members of the family Bunyaviridae, and especially for Crimean-Congo hemorrhagic fever virus (CCHFV), are poorly understood. Considering the severity of disease and the widespread geographical occurrence of CCHFV, investigating viral entry is of great value for development of antivirals. In this study, we have shown that knockdown of clathrin by small interfering RNA significantly reduced CCHFV nucleocapsid protein and viral RNA levels, suggesting that CCHFV utilizes clathrin-dependent endocytosis. In contrast, caveolin-1, an important constituent of caveolae endocytosis, is not important in CCHFV infection. Moreover, treatment with drugs that are known to interfere with the formation of clathrin-coated pits (sucrose and chlorpromazine) or endosome acidification (bafilomycin A1 and NH(4)Cl) also supported a clathrin-dependent pathway in the entry process of CCHFV. Finally, we demonstrated that cholesterol depletion in the cell plasma membrane significantly inhibited CCHFV infection. In the presence of exogenous cholesterol, this process was reversed, suggesting that cholesterol is important in the life cycle of CCHFV.
    Journal of General Virology 02/2009; 90(Pt 1):210-5. DOI:10.1099/vir.0.006387-0 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment.
    Virology 10/2008; 381(2):230-40. DOI:10.1016/j.virol.2008.08.013 · 3.28 Impact Factor