Article

Chikungunya fever: a re-emerging viral infection.

National Institute of Communicable Diseases, 22, Sham Nath Marg, New Delhi - 110 054, India.
Indian Journal of Medical Microbiology (Impact Factor: 0.91). 01/2008; 26(1):5-12. DOI: 10.4103/0255-0857.38850
Source: PubMed

ABSTRACT Chikungunya (CHIK) fever is a re-emerging viral disease characterized by abrupt onset of fever with severe arthralgia followed by constitutional symptoms and rash lasting for 1-7 days. The disease is almost self-limiting and rarely fatal. Chikungunya virus (CHIKV) is a RNA virus belonging to family Togaviridae, genus Alphavirus. Molecular characterization has demonstrated two distinct lineages of strains which cause epidemics in Africa and Asia. These geographical genotypes exhibit differences in the transmission cycles. In contrast to Africa where sylvatic cycle is maintained between monkeys and wild mosquitoes, in Asia the cycle continues between humans and the Aedes aegypti mosquito. CHIKV is known to cause epidemics after a period of quiescence. The first recorded epidemic occurred in Tanzania in 1952-1953. In Asia, CHIK activity was documented since its isolation in Bangkok, Thailand in 1958. Virus transmission continued till 1964. After hiatus, the virus activity re-appeared in the mid-1970s and declined by 1976. In India, well-documented outbreaks occurred in 1963 and 1964 in Kolkata and southern India, respectively. Thereafter, a small outbreak of CHIK was reported from Sholapur district, Maharashtra in 1973. CHIKV emerged in the islands of South West Indian Ocean viz. French island of La Reunion, Mayotee, Mauritius and Seychelles which are reporting the outbreak since February, 2005. After quiescence of about three decades, CHIKV re-emerged in India in the states of Andhra Pradesh, Karnataka, Maharashtra, Madhya Pradesh and Tamil Nadu since December, 2005. Cases have also been reported from Rajasthan, Gujarat and Kerala. The outbreak is still continuing. National Institute of Communicable Diseases has conducted epidemiological, entomological and laboratory investigations for confirmation of the outbreak. These have been discussed in detail along with the major challenges that the country faced during the current outbreak.

1 Bookmark
 · 
197 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging animal parasitic diseases are reviewed and appropriate strategies for efficient monitoring and surveillance in Nigeria are outlined. Animal and human parasitic infections are distinguished. Emerging diseases have been described as those diseases that are being recognised for the first time or diseases that are already recorded but their frequency and/or geographic range is being increased tremendously. Emergence of new diseases may be due to a number of factors such as the spread of a new infectious agent, recognition of an infection that has been in existence but undiagnosed, or when it is realised that an established disease has an infectious origin. The terms could also be used to describe the resurgence of a known infection after its incidence had been known to have declined. Emerging infections are compounding the control of infectious diseases and huge resources are being channeled to alleviate the rising challenge. The diseases are numerous and include helminth, protozoal / rickettsial and entomological. A list of parasitic emerging diseases in Nigeria is included. Globally occurring emerging parasitic diseases are also outlined. Emerging and re-emerging infections can be brought about by many factors including climate change and global warming, changes in biodiversity, population mobility, movement of animals, globalisation of commerce/trade and food supply, social and cultural factors such as food eating habits, religious beliefs, farming practices, trade of infected healthy animals, reduction in the available land for animals, immune-suppressed host and host density and misuse or over use of some drugs leading to drug resistance.
    The open microbiology journal. 01/2014; 8:87-94.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the risk of emergence of chikungunya virus (CHIKV) in West Africa, vector competence of wild-type, urban, and non-urban Aedes aegypti and Ae. vittatus from Senegal and Cape Verde for CHIKV was investigated. Mosquitoes were fed orally with CHIKV isolates from mosquitoes (ArD30237), bats (CS13-288), and humans (HD180738). After 5, 10, and 15 days of incubation following an infectious blood meal, presence of CHIKV RNA was determined in bodies, legs/wings, and saliva using real-time reverse transcription-polymerase chain reaction. Aedes vittatus showed high susceptibility (50-100%) and early dissemination and transmission of all CHIKV strains tested. Aedes aegypti exhibited infection rates ranging from 0% to 50%. Aedes aegypti from Cape Verde and Kedougou, but not those from Dakar, showed the potential to transmit CHIKV in saliva. Analysis of biology and competence showed relatively high infective survival rates for Ae. vittatus and Ae. aegypti from Cape Verde, suggesting their efficient vector capacity in West Africa.
    The American journal of tropical medicine and hygiene 07/2014; · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following almost 30 years of relative silence, chikungunya fever reemerged in Kenya in 2004. It subsequently spread to the islands of the Indian Ocean, reaching Southeast Asia in 2006. The virus was first detected in Cambodia in 2011 and a large outbreak occurred in the village of Trapeang Roka Kampong Speu Province in March 2012, in which 44% of the villagers had a recent infection biologically confirmed. The epidemic curve was constructed from the number of biologically-confirmed CHIKV cases per day determined from the date of fever onset, which was self-reported during a data collection campaign conducted in the village after the outbreak. All individuals participating in the campaign had infections confirmed by laboratory analysis, allowing for the identification of asymptomatic cases and those with an unreported date of fever onset. We develop a stochastic model explicitly including such cases, all of whom do not appear on the epidemic curve. We estimate the basic reproduction number of the outbreak to be 6.46 (95% C.I. [6.24, 6.78]). We show that this estimate is particularly sensitive to changes in the biting rate and mosquito longevity. Our model also indicates that the infection was more widespread within the population on the reported epidemic start date. We show that the exclusion of asymptomatic cases and cases with undocumented onset dates can lead to an underestimation of the reproduction number which, in turn, could negatively impact control strategies implemented by public health authorities. We highlight the need for properly documenting newly emerging pathogens in immunologically naive populations and the importance of identifying the route of disease introduction.
    PLoS Neglected Tropical Diseases 09/2014; 8(9):e3120. · 4.57 Impact Factor