Suppressor role of activating transcription factor 2 (ATF2) in skin cancer

Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 03/2008; 105(5):1674-9. DOI: 10.1073/pnas.0706057105
Source: PubMed


Activating transcription factor 2 (ATF2) regulates transcription in response to stress and growth factor stimuli. Here, we use a mouse model in which ATF2 was selectively deleted in keratinocytes. Crossing the conditionally expressed ATF2 mutant with K14-Cre mice (K14.ATF2(f/f)) resulted in selective expression of mutant ATF2 within the basal layer of the epidermis. When subjected to a two-stage skin carcinogenesis protocol [7,12-dimethylbenz[a]anthracene/phorbol 12-tetradecanoate 13-acetate (DMBA/TPA)], K14.ATF2(f/f) mice showed significant increases in both the incidence and prevalence of papilloma development compared with the WT ATF2 mice. Consistent with these findings, keratinocytes of K14.ATF2(f/f) mice exhibit greater anchorage-independent growth compared with ATF2 WT keratinocytes. Papillomas of K14.ATF2(f/f) mice exhibit reduced expression of presenilin1, which is associated with enhanced beta-catenin and cyclin D1, and reduced Notch1 expression. Significantly, a reduction of nuclear ATF2 and increased beta-catenin expression were seen in samples of squamous and basal cell carcinoma, as opposed to normal skin. Our data reveal that loss of ATF2 transcriptional activity serves to promote skin tumor formation, thereby indicating a suppressor activity of ATF2 in skin tumor formation.

Download full-text


Available from: Boris Fichtman, Apr 23, 2014
24 Reads
  • Source
    • "These factors are members of the basic leucine zipper (bZIP) family of transcription factors. Once activated ATF2 forms a homodimer or heterodimers with cJun, or other AP1 family members and binds CREs to regulate diverse target genes including CREB1, ATF, and Jun/Fos family members [14], [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The upstream Gγ-globin cAMP-response element (G-CRE) plays an important role in regulating Gγ-globin expression through binding of ATF2 and its DNA-binding partners defined in this study. ATF2 knockdown resulted in a significant reduction of γ-globin expression accompanied by decreased ATF2 binding to the G-CRE. By contrast, stable ATF2 expression in K562 cells increased γ-globin transcription which was reduced by ATF2 knockdown. Moreover, a similar effect of ATF2 on γ-globin expression was observed in primary erythroid progenitors. To understand the role of ATF2 in γ-globin expression, chromatographically purified G-CRE/ATF2-interacting proteins were subjected to mass spectrometry analysis; major binding partners included CREB1, cJun, Brg1, and histone deacetylases among others. Immunoprecipitation assays demonstrated interaction of these proteins with ATF2 and in vivo GCRE binding in CD34(+) cells undergoing erythroid differentiation which was correlated with γ-globin expression during development. These results suggest synergism between developmental stage-specific recruitments of the ATF2 protein complex and expression of γ-globin during erythropoiesis. Microarray studies in K562 cells support ATF2 plays diverse roles in hematopoiesis and chromatin remodeling.
    PLoS ONE 11/2013; 8(11):e78253. DOI:10.1371/journal.pone.0078253 · 3.23 Impact Factor
  • Source
    • "The resulting tumors display enhanced β-catenin and cyclin D1 and reduced Notch1 expression. This is consistent with the observation of reduced ATF2 and increased β-catenin in human squamous and basal cell carcinoma samples [99] and suggests that ATF2 suppresses epidermal carcinogenesis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: AP1 (jun/fos) transcription factors (c-jun, junB, junD, c-fos, FosB, Fra-1, and Fra-2) are key regulators of epidermal keratinocyte survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and because AP1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Various in vivo genetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and expression of dominant-negative inactivating AP1 transcription factors in epidermis. Taken together, these studies suggest that individual AP1 transcription factors have different functions in the epidermis and in cancer development and that altering AP1 transcription factor function in the basal versus suprabasal layers differentially influences the epidermal differentiation response and disease and cancer development.
    05/2013; 2013(1):537028. DOI:10.1155/2013/537028
  • Source
    • "ATF2 is a protein that displays diverse, tissue-dependent functions [10], [11]. For instance, ATF2 has been implicated in malignant and non-malignant skin tumor development [12], [13]. ATF2 also elicits a suppressor function in mammary tumors [14], and mediates lipopolysaccharide-induced transcription in macrophage cells [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors.
    PLoS ONE 08/2011; 6(8):e23351. DOI:10.1371/journal.pone.0023351 · 3.23 Impact Factor
Show more