Article

Familial deletion within NLGN4 associated with autism and Tourette syndrome

Department of Genetics, Children's Hospital Boston, Boston, MA 02115, USA.
European Journal of HumanGenetics (Impact Factor: 4.23). 06/2008; 16(5):614-8. DOI: 10.1038/sj.ejhg.5202006
Source: PubMed

ABSTRACT Neuroligin 4 (NLGN4) is a member of a cell adhesion protein family that appears to play a role in the maturation and function of neuronal synapses. Mutations in the X-linked NLGN4 gene are a potential cause of autistic spectrum disorders, and mutations have been reported in several patients with autism, Asperger syndrome, and mental retardation. We describe here a family with a wide variation in neuropsychiatric illness associated with a deletion of exons 4, 5, and 6 of NLGN4. The proband is an autistic boy with a motor tic. His brother has Tourette syndrome and attention deficit hyperactivity disorder. Their mother, a carrier, has a learning disorder, anxiety, and depression. This family demonstrates that NLGN4 mutations can be associated with a wide spectrum of neuropsychiatric conditions and that carriers may be affected with milder symptoms.

0 Followers
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the X-linked genes neuroligin 3 (NLGN3) and neuroligin 4X (NLGN4X) were first implicated in the pathogenesis of X-linked autism in Swedish families. However, reports of mutations in these genes in autism spectrum disorder (ASD) patients from various ethnic backgrounds present conflicting results regarding the etiology of ASD, possibly because of genetic heterogeneity and/or differences in their ethnic background. Additional mutation screening study on another ethnic background could help to clarify the relevance of the genes to ASD. We scanned the entire coding regions of NLGN3 and NLGN4X in 62 Japanese patients with ASD by polymerase chain reaction-high-resolution melting curve and direct sequencing analyses. Four synonymous substitutions, one in NLGN3 and three in NLGN4X, were identified in four of the 62 patients. These substitutions were not present in 278 control X-chromosomes from unrelated Japanese individuals and were not registered in the database of Single Nucleotide Polymorphisms build 132 or in the Japanese Single Nucleotide Polymorphisms database, indicating that they were novel and specific to ASD. Though further analysis is necessary to determine the physiological and clinical importance of such substitutions, the possibility of the relevance of both synonymous and nonsynonymous substitutions with the etiology of ASD should be considered.
    07/2012; 2012:724072. DOI:10.1155/2012/724072
  • Source
    Autism - A Neurodevelopmental Journey from Genes to Behaviour, 08/2011; , ISBN: 978-953-307-493-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigations into the genetics of child psychiatric disorders have finally begun to shed light on molecular and cellular mechanisms of psychopathology. The first strains of success in this notoriously difficult area of inquiry are the result of an increasingly sophisticated appreciation of the allelic architecture of common neuropsychiatric and neurodevelopmental disorders, the consolidation of large patient cohorts now beginning to reach sufficient size to power reliable studies, the emergence of genomic tools enabling comprehensive investigations of rare as well as common genetic variation, and advances in developmental neuroscience that are fueling the rapid translation of genetic findings.
    Neuron 10/2010; 68(2):254-69. DOI:10.1016/j.neuron.2010.10.004 · 15.98 Impact Factor

Preview

Download
0 Downloads
Available from