Low levels of raf kinase inhibitory protein in growth hormone-secreting pituitary adenomas correlate with poor response to octreotide treatment.

Research Institute for Internal Medicine, Section of Endocrinology, University of Oslo, Oslo N-0027, Norway.
Journal of Clinical Endocrinology &amp Metabolism (Impact Factor: 6.31). 05/2008; 93(4):1211-6. DOI: 10.1210/jc.2007-2272
Source: PubMed

ABSTRACT Excessive GH production by pituitary tumors causes acromegaly. Medical treatment of acromegaly with somatostatin analogs (SMSs), like octreotide, is well established, but the clinical effect is variable. One mechanism for octreotide effect is inhibition of the MAPK signaling pathway after binding to the G protein-coupled somatostatin receptor. Nonphosphorylated Raf kinase inhibitory protein (RKIP) binds to and inhibits Raf1 kinase, and thereby attenuates MAPK signaling, whereas phosphorylated RKIP inhibits G protein receptor internalization and degradation due to inhibition of G protein receptor kinase 2. Objective: Our objective was to study RKIP levels in pituitary somatotroph adenomas, and relate them to clinical characteristics and response to octreotide treatment in patients with acromegaly.
RKIP level was analyzed by Western blot of proteins extracted from somatotroph tumors frozen a short time after surgery in 51 patients with active acromegaly. An acute somatostatin test was performed in 46 of the patients, and in 21 the IGF-I level before and 6 months after SMS treatment was available.
The adenoma RKIP level correlated significantly to both the acute and the long-term octreotide responses on serum levels of GH and IGF-I, respectively. In multiple regression analyses, the RKIP level was a significant determinant for both the GH reduction in the acute test and the IGF-I reduction after approximately 6 months.
The RKIP level in somatotroph adenomas seems to be important for the clinical effect of SMS treatment, in which low levels of RKIP correlate to poor clinical response to SMSs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatostatin (SRIF), an inhibitory polypeptide with two biologically active forms SRIF-14 and SRIF-28, inhibits growth hormone (GH), prolactin (PRL), thyrotropin (TSH), and adrenocorticotropin (ACTH) secretion in the anterior pituitary gland. Somatostatin also has an anti-proliferative effect inducing cell-cycle arrest and apoptosis. Such actions are mediated through five G-protein coupled somatostatin receptors (SSTR); SSTR1 to SSTR5. In GH-secreting adenomas, SSTR2 expression predominates, and somatostatin receptor ligands (SRLs; octreotide and lanreotide) directed to SSTR2 are presently the mainstays of medical therapy. However, about half of patients show incomplete biochemical remission, but the definition of resistance per se remains controversial. We summarize here the determinants of SRL resistance in acromegaly patients, including clinical, imaging features as well as molecular (mutations, SSTR variants and polymorphisms), and histopathological (granulation pattern, and proteins and receptor expression) predictors. The role of SSTR5 may explain the partial responsiveness to SRLs in patients with adequate SSTR2 density in the cell membrane. In patients with ACTH-secreting pituitary adenomas, i.e. Cushing disease (CD), SSTR5 is the most abundant receptor expressed and tumors show low SSTR2 density due to hypercortisolism-induced SSTR2-down regulation. Clinical studies with pasireotide, a multireceptor-targeted SRL with increased SSTR5 activity, lead to approval of pasireotide for treatment of patients with CD. Other SRL delivery modes (oral octreotide), multireceptor-targeted SRL (somatoprim) or chimeric compounds targeting dopamine D2 receptors and SSTR2 (dopastatin) are briefly discussed.
    Journal of Molecular Endocrinology 03/2014; · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatostatin is a peptide with a potent and broad antisecretory action, which makes it an invaluable drug target for the pharmacological management of pituitary adenomas and neuroendocrine tumors. Somatostatin receptors (SSTR1, 2A and B, 3, 4 and 5) belong to the G protein coupled receptor family and have a wide expression pattern in both normal tissues and solid tumors. Investigating the function of each SSTR in several tumor types has provided a wealth of information about the common but also distinct signaling cascades that suppress tumor cell proliferation, survival and angiogenesis. This provided the rationale for developing multireceptor-targeted somatostatin analogs and combination therapies with signaling-targeted agents such as inhibitors of the mammalian (or mechanistic) target of rapamycin (mTOR). The ability of SSTR to internalize and the development of rabiolabeled somatostatin analogs have improved the diagnosis and treatment of neuroendocrine tumors.
    Frontiers in Neuroendocrinology 07/2013; · 7.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent in vitro studies highlighted G protein-coupled receptor kinase (GRK)2 and β-arrestins as important players in driving somatostatin receptor (SSTR) desensitization and trafficking. Our aim was to characterize GRK2 and β-arrestins expression in different pituitary adenomas and to investigate their potential role in the response to somatostatin analog (SSA) treatment in GH-secreting adenomas (GHomas). We evaluated mRNA expression of multiple SSTRs, GRK2, β-arrestin 1, and β-arrestin 2 in 41 pituitary adenomas (31 GH secreting, 6 nonfunctioning, and 4 prolactinomas [PRLomas]). Within the GHomas group, mRNA data were correlated with the in vivo response to an acute octreotide test and with the GH-lowering effect of SSA in cultured primary cells. β-Arrestin 1 expression was low in all 3 adenoma histotypes. However, its expression was significantly lower in GHomas and PRLomas, compared with nonfunctioning pituitary adenomas (P < .01). GRK2 expression was higher in PRLomas and nonfunctioning pituitary adenomas compared with GHomas (P < .05). In the GHomas group, GRK2 expression was inversely correlated to β-arrestin 1 (P < .05) and positively correlated to β-arrestin 2 (P < .0001). SSA treatment did not affect GRK2 and β-arrestin expression in GHomas or in cultured rat pituitary tumor GH3 cells. Noteworthy, β-arrestin 1 was significantly lower (P < .05) in tumors responsive to octreotide treatment in vitro, whereas GRK2 and SSTR subtype 2 were significantly higher (P < .05). Likewise, β-arrestin 1 levels were inversely correlated with the in vivo response to acute octreotide test (P = .001), whereas GRK2 and SSTR subtype 2 expression were positively correlated (P < .05). In conclusion, for the first time, we characterized GRK2, β-arrestin 1, and β-arrestin 2 expression in a representative number of pituitary adenomas. β-Arrestin 1 and GRK2 seem to have a role in modulating GH secretion during SSA treatment.
    Endocrinology 10/2013; · 4.72 Impact Factor

Full-text (2 Sources)

Available from
Aug 29, 2014