Selective Gene Expression by Postnatal Electroporation during Olfactory Interneuron Neurogenesis

Department of Biological Sciences, Columbia University, New York, New York, USA.
PLoS ONE (Impact Factor: 3.53). 02/2008; 3(1):e1517. DOI: 10.1371/journal.pone.0001517
Source: PubMed

ABSTRACT Neurogenesis persists in the olfactory system throughout life. The mechanisms of how new neurons are generated, how they integrate into circuits, and their role in coding remain mysteries. Here we report a technique that will greatly facilitate research into these questions. We found that electroporation can be used to robustly and selectively label progenitors in the Subventicular Zone. The approach was performed postnatally, without surgery, and with near 100% success rates. Labeling was found in all classes of interneurons in the olfactory bulb, persisted to adulthood and had no adverse effects. The broad utility of electroporation was demonstrated by encoding a calcium sensor and markers of intracellular organelles. The approach was found to be effective in wildtype and transgenic mice as well as rats. Given its versatility, robustness, and both time and cost effectiveness, this method offers a powerful new way to use genetic manipulation to understand adult neurogenesis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electroporation-mediated gene transfer has been developed for the analysis of mammalian brain development in vivo. Indeed, in utero electroporation method is widely used for the investigation of the mouse embryonic cortical development while in vivo electroporation using neonatal mouse brain is employed for the analysis of the rostral migratory stream (RMS) and postnatal olfactory neurogenesis. In the present study, we established a stable gene-transfer method to dentate gyrus (DG) neurons by carefully determining the in vivo electroporation conditions, such as position and direction of electrode, voltage for electric pulses, and interval between electroporation and sample preparation. Consequently, GFP-positive cells in DG were observed to extend branched dendrites and long axons into the molecular layer and the hilus, respectively, 21 days after electrporation. They were morphologically identified as dentate granule neurons with many protrusions on dendrites, and some of them had wide head and thin neck that resembled matured mushroom spines. Expression of GFP in dentate neurons sustained for at least 9 months after electroporation under our experimental conditions. Taken together, the method developed here could be a powerful new tool for the analysis of the postnatal DG development. © 2014 Wiley Periodicals, Inc.
    Hippocampus 12/2014; 24(12). DOI:10.1002/hipo.22325 · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise methods for transgene regulation are important to study signaling pathways and cell lineages in biological systems where gene function is often recycled within and across lineages. We engineered a genetic toolset for flexible transgene regulation in these diverse cellular contexts. Specifically, we created an optimized piggyBac transposon-based system, allowing for the facile generation of stably transduced cell lineages in vivo and in vitro. The system, termed pB-Tet-GOI (piggyBac-transposable tetracycline transactivator-mediated flexible expression of a genetic element of interest), incorporates the latest generation of tetracycline (Tet) transactivator and reverse Tet transactivator variants-along with engineered mutants-in order to provide regulated transgene expression upon addition or removal of doxycycline (dox). Altogether, the flexibility of the system allows for dox-induced, dox-suppressed, dox-resistant (i.e., constitutive), and dox-induced/constitutive regulation of transgenes. This versatile strategy provides reversible temporal regulation of transgenes with robust inducibility and minimal leakiness. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic manipulation is widely used to research the central nervous system (CNS). The manipulation of molecular expression in a small number of neurons permits the detailed investigation of the role of specific molecules on the function and morphology of the neurons. Electroporation is a broadly used technique for gene transfer in the CNS. However, the targeting of gene transfer using electroporation in postnatal animals was restricted to the cortex, hippocampus, or the region facing the ventricle in previous reports. Electroporation targeting of deep brain structures, such as the thalamus, has been difficult. We introduce a novel electroporation technique that enables gene transfer to a physiologically identified deep brain region using a glass pipette. We recorded neural activity in young-adult mice to identify the location of the lateral geniculate nucleus (LGN) of the thalamus, using a glass pipette electrode containing the plasmid DNA encoding enhanced green fluorescent protein (EGFP). The location of the LGN was confirmed by monitoring visual responses, and the plasmid solution was pressure-injected into the recording site. Voltage pulses were delivered through the glass pipette electrode. Several EGFP-labeled somata and dendrites were observed in the LGN after a few weeks, and labeled axons were found in the visual cortex. The EGFP-expressing structures were observed in detail sufficient to reconstruct their morphology in three dimensions. We further confirmed the applicability of this technique in cats. This method should be useful for the transfer of various genes into cells in physiologically identified brain regions in rodents and gyrencephalic mammals.
    Brain Structure and Function 02/2014; DOI:10.1007/s00429-014-0724-x · 4.57 Impact Factor

Full-text (4 Sources)

Available from
Jun 10, 2014