Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas

Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, United States of America.
Molecular Medicine (Impact Factor: 4.51). 05/2008; 14(5-6):264-75. DOI: 10.2119/2007-00101.Yu
Source: PubMed


Uterine leiomyomas (fibroids) are benign tumors that are prevalent in women of reproductive age. Research suggests that activated receptor tyrosine kinases (RTKs) play an important role in the enhanced proliferation observed in fibroids. In this study, a phospho-RTK array technique was used to detect RTK activity in leiomyomas compared with myometrial tissue. We found that fifteen out of seventeen RTKs evaluated in this study were highly expressed (P < 0.02-0.03) in the leiomyomas, and included the IGF-I/IGF-IR, EGF/EGFR, FGF/FGF-R, HGF/HGF-R, and PDGF/PDGF-R gene families. Due to the higher protein levels of IGF-IR observed in leiomyomas by us in earlier studies, we decided to focus on the activation of the IGF-IR, its downstream effectors, and MAPKp44/42 to confirm our earlier findings; and validate the significance of the increased IGF-IR phosphorylation observed by RTK array analysis in this study. We used immunolocalization, western blot, or immunoprecipitation studies and confirmed that leiomyomas overexpressed IGF-IRbeta and phosphorylated IGF-IRbeta. Additionally, we showed that the downstream effectors, Shc, Grb2, and MAPKp44/42 (P < 0.02-0.001) were also overexpressed and involved in IGF-IR signaling in these tumors, while IRS-I, PI3K, and AKT were not. In vitro studies showed that IGF-I (100 ng/mL) increased the proliferation of uterine leiomyoma cells (UtLM) (P < 0.0001), and that phosphorylated IGF-IRbeta, Shc, and MAPKp44/42 were also overexpressed in IGF-I-treated UtLM cells (P < 0.05), similar to the tissue findings. A neutralizing antibody against the IGF-IRbeta blocked these effects. These data indicate that overexpression of RTKs and, in particular, activation of the IGF-IR signaling pathway through Shc/Grb2/MAPK are important in mediating uterine leiomyoma growth. These data may provide new anti-tumor targets for noninvasive treatment of fibroids.

Download full-text


Available from: Stanley Robboy, Sep 30, 2015
24 Reads
  • Source
    • "Regulation of growth factor signaling pathways in uterine fibroids by endogenous and environmental factors Estrogen and progesterone influence leiomyoma growth through regulating growth factors and cytokines and their signaling pathways (Flake et al., 2003). Activation of steroid hormone receptors can have a myriad of effects including the regulation of growth factors and their receptor tyrosine kinases (RTKs) that can result in the activation of downstream effector proteins, such as mitogen-activated protein kinase (MAPK) p44/42 (ERK1/2) (Yu et al., 2008, 2010) (see Tables I and II). Fibroids may also be targeted by environmental chemicals whose biological effects are mediated by hormone receptors (Di et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUNDUterine fibroids are the most common gynecologic tumors in women of reproductive age yet the etiology and pathogenesis of these lesions remain poorly understood. Age, African ancestry, nulliparity and obesity have been identified as predisposing factors for uterine fibroids. Symptomatic tumors can cause excessive uterine bleeding, bladder dysfunction and pelvic pain, as well as associated reproductive disorders such as infertility, miscarriage and other adverse pregnancy outcomes. Currently, there are limited noninvasive therapies for fibroids and no early intervention or prevention strategies are readily available. This review summarizes the advances in basic, applied and translational uterine fibroid research, in addition to current and proposed approaches to clinical management as presented at the 'Advances in Uterine Leiomyoma Research: 3rd NIH International Congress'. Congress recommendations and a review of the fibroid literature are also reported.METHODSThis review is a report of meeting proceedings, the resulting recommendations and a literature review of the subject.RESULTSThe research data presented highlights the complexity of uterine fibroids and the convergence of ethnicity, race, genetics, epigenetics and environmental factors, including lifestyle and possible socioeconomic parameters on disease manifestation. The data presented suggest it is likely that the majority of women with uterine fibroids will have normal pregnancy outcomes; however, additional research is warranted. As an alternative to surgery, an effective long-term medical treatment for uterine fibroids should reduce heavy uterine bleeding and fibroid/uterine volume without excessive side effects. This goal has not been achieved and current treatments reduce symptoms only temporarily; however, a multi-disciplined approach to understanding the molecular origins and pathogenesis of uterine fibroids, as presented in this report, makes our quest for identifying novel targets for noninvasive, possibly nonsystemic and effective long-term treatment very promising.CONCLUSIONSThe Congress facilitated the exchange of scientific information among members of the uterine leiomyoma research and health-care communities. While advances in research have deepened our knowledge of the pathobiology of fibroids, their etiology still remains incompletely understood. Further needs exist for determination of risk factors and initiation of preventive measures for fibroids, in addition to continued development of new medical and minimally invasive options for treatment.
    Human Reproduction Update 04/2014; 20(3). DOI:10.1093/humupd/dmt058 · 10.17 Impact Factor
  • Source
    • "TGF-β can also activate kinase pathways (MAPK/ERK/Smad) and thereby modulate the expression of different types of genes influencing the leiomyoma growth and regression [102]. Similarly, IGF may increase cellular proliferation in uterine leiomyoma cells through activation of the MAPK pathway [103] and thus play a crucial role in leiomyoma cell growth, by upregulation of Bcl-2 protein expression in leiomyoma cells [104]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Uterine leiomyomas (fibroids or myomas) are benign tumors of uterus and clinically apparent in a large part of reproductive aged women. Clinically, they present with a variety of symptoms: excessive menstrual bleeding, dysmenorrhoea and intermenstrual bleeding, chronic pelvic pain, and pressure symptoms such as a sensation of bloatedness, increased urinary frequency, and bowel disturbance. In addition, they may compromise reproductive functions, possibly contributing to subfertility, early pregnancy loss, and later pregnancy complications. Despite the prevalence of this condition, myoma research is underfunded compared to other nonmalignant diseases. To date, several pathogenetic factors such as genetics, microRNA, steroids, growth factors, cytokines, chemokines, and extracellular matrix components have been implicated in the development and growth of leiomyoma. This paper summarizes the available literature regarding the ultimate relative knowledge on pathogenesis of uterine fibroids and their interactions with endometrium and subendometrial myometrium.
    Obstetrics and Gynecology International 09/2013; 2013(4):173184. DOI:10.1155/2013/173184
  • Source
    • "UtLM cells (GM10964) were purchased from Coriell Institute for Medical Research (Camden, NJ, USA) and maintained in MEM (Gibco Life Technologies, Grand Island, NY, USA) with supplements at 37 • C, with 95% humidity, and 5% carbon dioxide as previously described [9] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen and growth factors play a major role in uterine leiomyoma (UtLM) growth possibly through interactions of receptor tyrosine kinases (RTKs) and estrogen receptor-alpha (ERα) signaling. We determined the genomic and nongenomic effects of 17β-estradiol (E(2)) on IGF-IR/MAPKp44/42 signaling and gene expression in human UtLM cells with intact or silenced IGF-IR. Analysis by RT(2) Profiler PCR-array showed genes involved in IGF-IR/MAPK signaling were upregulated in UtLM cells by E(2) including cyclin D kinases, MAPKs, and MAPK kinases; RTK signaling mediator, GRB2; transcriptional factors ELK1 and E2F1; CCNB2 involved in cell cycle progression, proliferation, and survival; and COL1A1 associated with collagen synthesis. Silencing (si)IGF-IR attenuated the above effects and resulted in upregulation of different genes, such as transcriptional factor ETS2; the tyrosine kinase receptor, EGFR; and DLK1 involved in fibrosis. E(2) rapidly activated IGF-IR/MAPKp44/42 signaling nongenomically and induced phosphorylation of ERα at ser118 in cells with a functional IGF-IR versus those without. E(2) also upregulated IGF-I gene and protein expression through a prolonged genomic event. These results suggest a pivotal role of IGF-IR and possibly other RTKs in mediating genomic and nongenomic hormone receptor interactions and signaling in fibroids and provide novel genes and targets for future intervention and prevention strategies.
    10/2012; 2012(2090-1739):204236. DOI:10.1155/2012/204236
Show more