Article

Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder.

Laboratory of Molecular Pathophysiology, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology (Impact Factor: 7.83). 02/2008; 33(11):2551-65. DOI: 10.1038/sj.npp.1301671
Source: PubMed

ABSTRACT Bipolar disorder (BPD) has traditionally been conceptualized as a neurochemical disorder, but there is mounting evidence for impairments of cellular plasticity and resilience. Here, we review and synthesize the evidence that critical aspects of mitochondrial function may play an integral role in the pathophysiology and treatment of BPD. Retrospective database searches were performed, including MEDLINE, abstract booklets, and conference proceedings. Articles were also obtained from references therein and personal communications, including original scientific work, reviews, and meta-analyses of the literature. Material regarding the potential role of mitochondrial function included genetic studies, microarray studies, studies of intracellular calcium regulation, neuroimaging studies, postmortem brain studies, and preclinical and clinical studies of cellular plasticity and resilience. We review these data and discuss their implications not only in the context of changing existing conceptualizations regarding the pathophysiology of BPD, but also for the strategic development of improved therapeutics. We have focused on specific aspects of mitochondrial dysfunction that may have major relevance for the pathophysiology and treatment of BPD. Notably, we discuss calcium dysregulation, oxidative phosphorylation abnormalities, and abnormalities in cellular resilience and synaptic plasticity. Accumulating evidence from microarray studies, biochemical studies, neuroimaging, and postmortem brain studies all support the role of mitochondrial dysfunction in the pathophysiology of BPD. We propose that although BPD is not a classic mitochondrial disease, subtle deficits in mitochondrial function likely play an important role in various facets of BPD, and that enhancing mitochondrial function may represent a critical component for the optimal long-term treatment of the disorder.

0 Followers
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms) of chemotherapy include (i) cognitive deficiencies such as problems with attention, memory and executive functioning; (ii) fatigue and motivational deficit; and (iii) neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence, neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs) activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.
    Frontiers in Neuroscience 05/2015; 9. DOI:10.3389/fnins.2015.00131
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Numerous studies have linked severe stress to the development of major depressive disorder (MDD), and suicidal behaviors. Furthermore, recent preclinical studies from our laboratory and others have demonstrated that in rodents, chronic stress and the stress hormone cortisol has caused oxidative damage to mitochondrial function and membrane lipids in the brain. Mitochondria play a key role in synaptic neurotransmitter signaling by providing adenosine triphosphate (ATP), mediating lipid and protein synthesis, buffering intracellular calcium, and regulating apoptotic and resilience pathways. Membrane lipids are similarly essential to central nervous system (CNS) function, because cholesterol, polyunsaturated fatty acids, and sphingolipids form a lipid raft region, a special lipid region on the membrane that mediates neurotransmitter signaling through G-protein coupled receptors and ion channels. Low serum cholesterol levels, low antioxidant capacity, and abnormal early morning cortisol levels are biomarkers consistently associated with both depression and suicidal behaviors. In this review, we summarize the manner in which nutrients can protect against oxidative damage to mitochondria and lipids in the neuronal circuits associated with cognitive and affective behaviors. These nutrients include ω3 fatty acids, antioxidants (vitamin C and zinc), members of the vitamin B family (Vitamin B12 and folic acid) and magnesium. Accumulating data have shown that these nutrients can enhance neurocognitive function, and may have therapeutic benefits for depression and suicidal behaviors. A growing body of studies suggests the intriguing possibility that regular consumption of these nutrients may help prevent the onset of mood disorders and suicidal behaviors in vulnerable individuals, or significantly augment the therapeutic effect of available antidepressants. These findings have important implications for the health of both military and civilian populations.
    Critical Reviews in Food Science and Nutrition 11/2014; DOI:10.1080/10408398.2013.876960 · 5.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hippocampus has been highly implicated in the pathophysiology of bipolar disorder (BD). Nevertheless, no study has longitudinally evaluated hippocampal metabolites levels in bipolar depression under treatment with lithium. Nineteen medication-free BD patients (78.9% treatment-naïve and 73.7% with BD type II) presenting an acute depressive episode and 17 healthy controls were studied. Patients were treated for 6 weeks with lithium in an open-label trial. N-acetyl aspartate (NAA), creatine, choline, myo-Inositol and glutamate levels were assessed in the left hippocampus before (week 0) and after lithium treatment (week 6) using 3T proton magnetic resonance spectroscopy (1H-MRS). The metabolite concentrations were estimated using internal water as reference and voxel segmentation for partial volume correction. At baseline, acutely depressed BD patients and healthy controls exhibited similar hippocampal metabolites concentrations, with no changes after 6 weeks of lithium monotherapy. A significant correlation between antidepressant efficacy and increases in NAA concentration over time was observed. Also, there was a significant positive correlation between the changes in glutamate concentrations over follow-up and plasma lithium levels at endpoint. Mixed effects model analysis revealed a bimodal effect of lithium plasma levels in hippocampal glutamate concentrations: levels of 0.2 to 0.49mmol/L (n=9) were associated with a decrease in glutamate concentrations, whereas the subgroup of BD subjects with "standard" lithium levels (= 0.50mmol/L) (n=10) showed an overall increase in glutamate concentrations over time. These preliminary results suggest that lithium has a bimodal action in hippocampal glutamate concentration depending on the plasma levels. Clinical trial number NCT01919892. © The Author 2014. Published by Oxford University Press on behalf of CINP.
    The International Journal of Neuropsychopharmacology 10/2014; 18(6). DOI:10.1093/ijnp/pyu058 · 5.26 Impact Factor

Preview

Download
1 Download
Available from