Article

Drug-screening platform based on the contractility of tissue-engineered muscle

Department of Pathology, RISE Research Building, Brown Medical School/Miriam Hospital, Providence, RI 02906, USA.
Muscle & Nerve (Impact Factor: 2.31). 04/2008; 37(4):438-47. DOI: 10.1002/mus.20931
Source: PubMed

ABSTRACT A tissue-based approach to in vitro drug screening allows for determination of the cumulative positive and negative effects of a drug at the tissue rather than the cellular or subcellular level. Skeletal muscle myoblasts were tissue-engineered into three-dimensional muscle with parallel myofibers generating directed forces. When grown attached to two flexible micro-posts (mu posts) acting as artificial tendons in a 96-well plate format, the miniature bioartificial muscles (mBAMs) generated tetanic (active) forces upon electrical stimulation measured with a novel image-based motion detection system. mBAM myofiber hypertrophy and active force increased in response to insulin-like growth factor 1. In contrast, mBAM deterioration and weakness was observed with a cholesterol-lowering statin. The results described in this study demonstrate the integration of tissue engineering and biomechanical testing into a single platform for the screening of compounds affecting muscle strength.

0 Followers
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To deal with concerns in China about environmental degradation and a growth in population accompanied by increased consumption of livestock products, a meat alternative is required. This study compared the environmental impacts of producing different protein sources for nutrition, including crops, livestock products, and cultured meat. The results showed that cultured meat has the lowest land use per unit of protein and unit of human digestible energy. China's crops have the lowest energy use and greenhouse gas (GHG) emissions per unit of energy and protein. The energy use in cultured meat production is slightly higher than that of current pork production in China, whereas GHG emissions are lower. It is concluded that the overall impact of replacing livestock products with cultured meat would be beneficial for China's environment and would potentially improve food security because less land is needed to produce the same amount of protein and energy.
    Journal of Integrative Agriculture 02/2015; DOI:10.1016/S2095-3119(14)60891-1 · 0.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 06/2015; 53. DOI:10.1016/j.biomaterials.2015.02.110 · 8.31 Impact Factor