Article

Drug-screening platform based on the contractility of tissue-engineered muscle

Department of Pathology, RISE Research Building, Brown Medical School/Miriam Hospital, Providence, RI 02906, USA.
Muscle & Nerve (Impact Factor: 2.31). 04/2008; 37(4):438-47. DOI: 10.1002/mus.20931
Source: PubMed

ABSTRACT A tissue-based approach to in vitro drug screening allows for determination of the cumulative positive and negative effects of a drug at the tissue rather than the cellular or subcellular level. Skeletal muscle myoblasts were tissue-engineered into three-dimensional muscle with parallel myofibers generating directed forces. When grown attached to two flexible micro-posts (mu posts) acting as artificial tendons in a 96-well plate format, the miniature bioartificial muscles (mBAMs) generated tetanic (active) forces upon electrical stimulation measured with a novel image-based motion detection system. mBAM myofiber hypertrophy and active force increased in response to insulin-like growth factor 1. In contrast, mBAM deterioration and weakness was observed with a cholesterol-lowering statin. The results described in this study demonstrate the integration of tissue engineering and biomechanical testing into a single platform for the screening of compounds affecting muscle strength.

0 Followers
 · 
74 Views
  • Source
    Dataset: 51
  • [Show abstract] [Hide abstract]
    ABSTRACT: To deal with concerns in China about environmental degradation and a growth in population accompanied by increased consumption of livestock products, a meat alternative is required. This study compared the environmental impacts of producing different protein sources for nutrition, including crops, livestock products, and cultured meat. The results showed that cultured meat has the lowest land use per unit of protein and unit of human digestible energy. China's crops have the lowest energy use and greenhouse gas (GHG) emissions per unit of energy and protein. The energy use in cultured meat production is slightly higher than that of current pork production in China, whereas GHG emissions are lower. It is concluded that the overall impact of replacing livestock products with cultured meat would be beneficial for China's environment and would potentially improve food security because less land is needed to produce the same amount of protein and energy.
    Journal of Integrative Agriculture 02/2015; 14(2). DOI:10.1016/S2095-3119(14)60891-1 · 0.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions.
    Biomaterials 06/2015; 53. DOI:10.1016/j.biomaterials.2015.02.110 · 8.31 Impact Factor