Negative regulation of the deacetylase SIRT1 by DBC1.

Institute for Cancer Genetics, and Department of Pathology College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA.
Nature (Impact Factor: 42.35). 02/2008; 451(7178):587-90. DOI: 10.1038/nature06515
Source: PubMed

ABSTRACT SIRT1 is an NAD-dependent deacetylase critically involved in stress responses, cellular metabolism and, possibly, ageing. The tumour suppressor p53 represents the first non-histone substrate functionally regulated by acetylation and deacetylation; we and others previously found that SIRT1 promotes cell survival by deacetylating p53 (refs 4-6). These results were further supported by the fact that p53 hyperacetylation and increased radiation-induced apoptosis were observed in Sirt1-deficient mice. Nevertheless, SIRT1-mediated deacetylase function is also implicated in p53-independent pathways under different cellular contexts, and its effects on transcriptional factors such as members of the FOXO family and PGC-1alpha directly modulate metabolic responses. These studies validate the importance of the deacetylase activity of SIRT1, but how SIRT1 activity is regulated in vivo is not well understood. Here we show that DBC1 (deleted in breast cancer 1) acts as a native inhibitor of SIRT1 in human cells. DBC1-mediated repression of SIRT1 leads to increasing levels of p53 acetylation and upregulation of p53-mediated function. In contrast, depletion of endogenous DBC1 by RNA interference (RNAi) stimulates SIRT1-mediated deacetylation of p53 and inhibits p53-dependent apoptosis. Notably, these effects can be reversed in cells by concomitant knockdown of endogenous SIRT1. Our study demonstrates that DBC1 promotes p53-mediated apoptosis through specific inhibition of SIRT1.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuin 1 (SIRT1), an NAD(+)-dependent protein deacetylase, regulates a host of target proteins, including peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional coregulator that binds to numerous transcription factors in response to deacetylation to promote mitochondrial biogenesis and oxidative metabolism. Our laboratory and others have shown that adipose triglyceride lipase (ATGL) increases the activity of the nuclear receptor PPAR-α, a PGC-1α binding partner, to promote fatty acid oxidation. Fatty acids bind and activate PPAR-α; therefore, it has been presumed that fatty acids derived from ATGL-catalyzed lipolysis act as PPAR-α ligands. We provide an alternate mechanism that links ATGL to PPAR-α signaling. We show that SIRT1 deacetylase activity is positively regulated by ATGL to promote PGC-1α signaling. In addition, ATGL mediates the effects of β-adrenergic signaling on SIRT1 activity, and PGC-1α and PPAR-α target gene expression independent of changes in NAD(+). Moreover, SIRT1 is required for the induction of PGC-1α/PPAR-α target genes and oxidative metabolism in response to increased ATGL-mediated lipolysis. Taken together, this work identifies SIRT1 as a critical node that links β-adrenergic signaling and lipolysis to changes in the transcriptional regulation of oxidative metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
    Diabetes 02/2015; 64(2):418-26. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deleted in breast cancer 1 (DBC1, CCAR2, KIAA1967) is a large, predominantly nuclear, multidomain protein that modulates gene expression by inhibiting several epigenetic modifiers, including the deacetylases SIRT1 and HDAC3, and the methyltransferase SUV39H1. DBC1 shares many highly conserved protein domains with its paralog cell cycle and apoptosis regulator 1 (CCAR1, CARP-1). In this study, we examined the full-length sequential and structural properties of DBC1 and CCAR1 from multiple species and correlated these properties with evolution. Our data shows that the conserved domains shared between DBC1 and CCAR1 have similar domain structures, as well as similar patterns of predicted disorder in less-conserved intrinsically disordered regions. Our analysis indicates similarities between DBC1, CCAR1, and the nematode protein lateral signaling target 3 (LST-3), suggesting that DBC1 and CCAR1 may have evolved from LST-3. Our data also suggests that DBC1 emerged later in evolution than CCAR1. DBC1 contains regions that show less conservation across species as compared to the same regions in CCAR1, suggesting a continuously evolving scenario for DBC1. Overall, this study provides insight into the structure and evolution of DBC1 and CCAR1, which may impact future studies on the biological functions of these proteins.
    BioMed Research International 01/2014; 2014:418458. · 2.71 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014