Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice.

Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma de Mallorca, Spain.
Obesity (Impact Factor: 4.39). 04/2008; 16(3):585-91. DOI: 10.1038/oby.2007.104
Source: PubMed

ABSTRACT All-trans retinoic acid (ATRA), a carboxylic form of vitamin A, favors in mice a mobilization of body fat reserves that correlates with an increment of oxidative and thermogenic capacity in adipose tissues. The objective of this study has been to investigate the effect of ATRA treatment on skeletal muscle capacity for fatty-acid catabolism.
Tissue composition and gene expression related to lipid and oxidative metabolism were analyzed in skeletal muscle of mice acutely treated with ATRA or vehicle (olive oil).
ATRA treatment triggered a dose-dependent increase in the muscle mRNA expression levels of selected enzymes, transporters and transcription factors involved in fatty-acid oxidation, respiration, and thermogenesis namely: muscle-type carnitine palmitoyltransferase 1, acyl CoA oxidase 1, subunit II of cytochrome oxidase, uncoupling protein 3, peroxisome proliferator-activated receptor-gamma co-activator -1alpha and peroxisome proliferator-activated receptor-delta (PPARdelta). The treatment also resulted in the upregulation of the mRNA levels of acetyl-CoA carboxylase 2 (ACC2), a key regulatory enzyme for mitochondrial fatty-acid oxidation in muscle. Skeletal muscle protein levels of PPARdelta and retinoid X receptor gamma, a partner for many nuclear receptors involved in lipid metabolism, were increased after ATRA treatment. Muscle lipid content was decreased.
These results indicate that ATRA treatment increases the capacity of skeletal muscle for fatty-acid oxidation. Knowledge of nutrients or nutrient-derivatives capable of enhancing oxidative metabolism in muscle and other tissues can contribute to new avenues of prevention and treatment of obesity and related disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in rodents has shown that dietary vitamin A reduces body fat by enhancing fat mobilisation and energy utilisation; however, their effects in growing dogs remain unclear. In the present study, we evaluated the development of body weight and body composition and compared observed energy intake with predicted energy intake in forty-nine puppies from two breeds (twenty-four Labrador Retriever (LAB) and twenty-five Miniature Schnauzer (MS)). A total of four different diets with increasing vitamin A content between 5·24 and 104·80 μmol retinol (5000-100 000 IU vitamin A)/4184 kJ (1000 kcal) metabolisable energy were fed from the age of 8 weeks up to 52 (MS) and 78 weeks (LAB). The daily energy intake was recorded throughout the experimental period. The body condition score was evaluated weekly using a seven-category system, and food allowances were adjusted to maintain optimal body condition. Body composition was assessed at the age of 26 and 52 weeks for both breeds and at the age of 78 weeks for the LAB breed only using dual-energy X-ray absorptiometry. The growth curves of the dogs followed a breed-specific pattern. However, data on energy intake showed considerable variability between the two breeds as well as when compared with predicted energy intake. In conclusion, the data show that energy intakes of puppies particularly during early growth are highly variable; however, the growth pattern and body composition of the LAB and MS breeds are not affected by the intake of vitamin A at levels up to 104·80 μmol retinol (100 000 IU vitamin A)/4184 kJ (1000 kcal).
    The British journal of nutrition 03/2014; DOI:10.1017/S0007114514000543 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vitamin A metabolite retinoic acid (RA) regulates gene transcription by activating the nuclear receptors RAR and PPARβ/δ and their cognate lipid binding proteins CRABP-II, which delivers RA to RAR, and FABP5, which shuttles the hormone to PPARβ/δ. In preadipocytes, RA signals predominantly through CRABP-II and the RAR isotype RARγ to induce the expression of hallmark markers of preadipocytes Pref-1, Sox9, and KLF2. RA thus maintains the preadipocyte phenotype and inhibits adipogenesis. In mature adipocytes, RA activates both of its receptors to upregulate expression of genes that enhance lipid oxidation, energy dissipation, and insulin responses. Consequently, RA potently protects mice from diet-induced obesity and insulin resistance by two distinct mechanisms: by counteracting adipogenesis, thereby moderating the formation of new fat cells, and by promoting energy expenditure, thereby preventing adipocyte hypertrophy.
    07/2013; 2(3):184-7. DOI:10.4161/adip.23489
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptome dynamics in the longissimus muscle (LM) of young Angus cattle were evaluated at 0, 60, 120, and 220 days from early-weaning. Bioinformatic analysis was performed using the dynamic impact approach (DIA) by means of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. Between 0 to 120 days (growing phase) most of the highly-impacted pathways (eg, ascorbate and aldarate metabolism, drug metabolism, cytochrome P450 and Retinol metabolism) were inhibited. The phase between 120 to 220 days (finishing phase) was characterized by the most striking differences with 3,784 differentially expressed genes (DEGs). Analysis of those DEGs revealed that the most impacted KEGG canonical pathway was glycosylphosphatidylinositol (GPI)-anchor biosynthesis, which was inhibited. Furthermore, inhibition of calpastatin and activation of tyrosine aminotransferase ubiquitination at 220 days promotes proteasomal degradation, while the concurrent activation of ribosomal proteins promotes protein synthesis. Therefore, the balance of these processes likely results in a steady-state of protein turnover during the finishing phase. Results underscore the importance of transcriptome dynamics in LM during growth.
    Bioinformatics and biology insights 01/2013; 7:253-70. DOI:10.4137/BBI.S12328

Full-text (2 Sources)

Available from
May 30, 2014