Article

Transmyocardial revascularization to enhance myocardial vasculogenesis and hemodynamic function

Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
The Journal of thoracic and cardiovascular surgery (Impact Factor: 3.99). 03/2008; 135(2):283-91, 291.e1; discussion 291. DOI: 10.1016/j.jtcvs.2007.09.043
Source: PubMed

ABSTRACT A significant number of patients have coronary artery disease that is not amenable to traditional revascularization. Prospective, randomized clinical trials have demonstrated therapeutic benefits with transmyocardial laser revascularization in this cohort. The molecular mechanisms underlying this therapy, however, are poorly understood. The focus of this study was evaluation of the proposed vasculogenic mechanisms involved in transmyocardial laser revascularization.
Male Yorkshire pigs (30-35 kg, n = 25) underwent left thoracotomy and placement of ameroid constrictors around the proximal left circumflex coronary artery. During the next 4 weeks, a well-defined region of myocardial ischemia developed, and the animals underwent a redo left thoracotomy. The animals were randomly assigned to sham treatment (thoracotomy only, control, n = 11) or transmyocardial laser revascularization of hibernating myocardium with a holmium:yttrium-aluminum-garnet laser (n = 14). After an additional 4 weeks, the animals underwent median sternotomy, echocardiographic analysis of wall motion, and hemodynamic analysis with an ascending aortic flow probe and pulmonary artery catheter. The hearts were explanted for molecular analysis.
Molecular analysis demonstrated statistically significant increases in the proangiogenic proteins nuclear factor kappaB (42 +/- 27 intensity units vs 591 +/- 383 intensity units, P = .03) and angiopoietin 1 (0 +/- 0 intensity units vs 241 +/- 87 intensity units, P = .003) relative to sham control values with transmyocardial laser revascularization within the ischemic myocardium. There were also increases in vasculogenesis (18.8 +/- 8.7 vessels/high-power field vs 31.4 +/- 10.2 vessels/high-power field, P = .02), and perfusion (0.028 +/- 0.009 microm3 blood/microm3 tissue vs 0.044 +/- 0.004 microm3 blood/microm3 tissue, P = .01). Enhanced myocardial viability was demonstrated by increased myofilament density (40.7 +/- 8.5 cardiomyocytes/high-power field vs 50.8 +/- 7.5 cardiomyocytes/high-power field, P = .03). Regional myocardial function within the treated territory demonstrated augmented contractility. Global hemodynamic function was significantly improved relative to the control group with transmyocardial laser revascularization (cardiac output 2.1 +/- 0.2 L/min vs 2.7 +/- 0.2 L/min, P = .007, mixed venous oxygen saturation 64.7% +/- 3.6% vs 76.1% +/- 3.4%, P = .008).
Transmyocardial laser revascularization with the holmium-YAG laser enhances perfusion, with resultant improvement in myocardial contractility.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the midterm results of patients with angina and diffuse coronary artery disease treated with transmyocardial revascularization in combination with autologous stem cell therapy. Nineteen patients with diffuse coronary artery disease and medically refractory class III/IV angina were evaluated between June 2007 and December 2009 for sole therapy TMR combined with intramyocardial injection of concentrated stem cells. At the time of surgery, autologous bone marrow (120cc) was aspirated from the iliac crest. A cardiac MRI and an isotopic test were performed before and after the procedure. Follow-up was performed by personal interview. There were no perioperative adverse events including no arrhythmias. Mean number of laser channels was 20 and the mean total number of intramyocardially injected cells per milliliter were: total mononuclear cells(83.6 × 10(6)), CD34+ cells(0.6 × 10(6)), and CD133+ cells(0.34 × 10(6)). At 12 months mean follow-up average angina class was significantly improved (3.4 ± 0.5 vs 1.4 ± 0.6; p = 0.004). In addition, monthly cardiovascular medication usage was significantly decreased (348 ± 118 vs. 201 ± 92; p = 0.001). At six months follow up there was a reduction in the number of cardiac hospital readmissions (2.9 ± 2.3 vs. 0.5 ± 0.8; p < 0.001). MRI showed no alterations regarding LV volumes and a 3% improvement regarding ejection fraction. The stem cell isolator efficiently concentrated autologous bone marrow derived stem cells while the TMR/stem cell combination delivery device worked uneventfully. An improvement in clinical status was noticed in the midterm follow-up. Images test showed no morphological alterations in the left ventricle after the procedure.
    BMC Cardiovascular Disorders 09/2010; 10:42. DOI:10.1186/1471-2261-10-42 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronary artery disease is a global health concern, with increasing morbidity and mortality. Surgical coronary artery bypass grafting has been performed on cardiopulmonary bypass for nearly four decades, with excellent long-term durability. Beating-heart coronary surgery has been increasing in frequency in an attempt to decrease cardiopulmonary bypass-related morbidity. Furthermore, with increasing expertise and technology, minimally invasive and robotic techniques have been developed to enhance post-operative recovery, patient satisfaction and cosmesis. Several clinical trials have demonstrated decreased morbidity and more rapid recovery following off-pump, minimally invasive and robotic procedures when compared to on-pump coronary artery bypass grafts (CABGs). An equivalent extent of revascularization and medium-term anastomotic patency has been demonstrated among all approaches. Furthermore, for a large number of patients who do not have anatomy amenable to traditional coronary revascularization, adjunctive molecular therapies may provide alternative myocardial micro-revascularization.
    International Journal of Medical Robotics and Computer Assisted Surgery 03/2009; 5(1):1-12. DOI:10.1002/rcs.230 · 1.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following ischemic injury, the endogenous repair mechanisms of the human heart are insufficient for meaningful tissue regeneration, so muscle lost is replaced by non-contractile scar. Current treatments for ischemic cardiomyopathy improve quality of life and increase life expectancy, but cannot cure the underlying disease of cardiomyocyte loss. Cellular transplantation is emerging as a valuable therapeutic approach to heal the ischemic heart. Adult bone marrow stem cells are capable of differentiation, regeneration of infarcted myocardium and induction of myogenesis and angiogenesis, ultimately leading to improved contractility. Positive results from animal studies have prompted several clinical trials to ascertain the safety and feasibility of cell therapy. However, despite all the excitement in stem cell research resulting from initial experimental data and preliminary clinical trials, the mixed results observed have raised many unanswered questions. A major obstacle to the identification of the optimal cell therapy is that the fate of the implanted cells and the nature of their beneficial effects are ill defined. A better understanding is fundamental for the development of new therapeutics, and to optimize stem cell applications. Well-designed and powered double-blinded randomized studies are clearly needed to confirm promising findings from early studies. With several ongoing randomized trials directed towards evaluation of stem cell therapies in patients with acute or chronic ischemic cardiomyopathy, the Canadian initiative represents a milestone in the field.
    The Canadian journal of cardiology 05/2014; 30(11). DOI:10.1016/j.cjca.2014.04.031 · 3.94 Impact Factor