Notch signaling is required for exocrine regeneration after acute pancreatitis.

Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
Gastroenterology (Impact Factor: 13.93). 03/2008; 134(2):544-55. DOI: 10.1053/j.gastro.2007.11.003
Source: PubMed

ABSTRACT The mechanisms for tissue regeneration and renewal after acute pancreatitis are not well understood but may involve activation of Notch signaling. To study the effect of Notch signaling ablation during acute experimental pancreatitis, we used a chemical and genetic approach to ablate Notch signaling in cerulein-induced pancreatitis in mice.
Acute pancreatitis was induced by cerulein treatment in mice treated with the gamma-secretase inhibitor dibenzazepine or in conditional Notch1 knockout mice. Mice were characterized using immunohistologic, biochemical, and molecular methods. To investigate Notch and beta-catenin interaction, acinar 266-6 cells were analyzed using transfection and biochemical assays.
Loss of Notch signaling results in impaired regeneration after acute pancreatitis with fewer mature acinar cells in dibenzazepine-treated and Notch1-deficient mice in the regenerative phase 3 days after induction. beta-catenin expression was increased and prolonged during exocrine regeneration. Crosstalk between Notch and beta-catenin-mediated signaling was identified, with Notch1-IC inhibiting beta-catenin-mediated transcriptional activity. This inhibition was dependent on a functional RAM domain.
Inhibition of Notch signaling in vivo leads to impaired regeneration of the exocrine pancreas after acute pancreatitis. Our results suggest an interaction of Notch and Wnt signaling in pancreatic acinar cells, providing evidence for a role of these pathways in the regulation of the maturation process of acinar cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we discuss the changes occurring in cellular states upon fate modulation and address how our understanding of the nature of this fluidity is shaping therapeutic approaches to pancreatic disorders such as diabetes and cancer. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Stem Cell 11/2014; 16(1). DOI:10.1016/j.stem.2014.11.001 · 22.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the adult pancreas, there has been a long-standing dispute as to whether stem/precursor populations that retain plasticity to differentiate into endocrine or acinar cell types exist in ducts. We previously reported that adult Sox9-expressing duct cells are sufficiently plastic to supply new acinar cells in Sox9-IRES-CreERT2 knock-in mice. In the present study, using Sox9-IRES-CreERT2 knock-in mice as a model, we aimed to analyze how plasticity is controlled in adult ducts. Adult duct cells in these mice express less Sox9 than do wild-type mice but Hes1 equally. Acinar cell differentiation was accelerated by Hes1 inactivation, but suppressed by NICD induction in adult Sox9-expressing cells. Quantitative analyses showed that Sox9 expression increased with the induction of NICD but did not change with Hes1 inactivation, suggesting that Notch regulates Hes1 and Sox9 in parallel. Taken together, these findings suggest that Hes1-mediated Notch activity determines the plasticity of adult pancreatic duct cells and that there may exist a dosage requirement of Sox9 for keeping the duct cell identity in the adult pancreas. In contrast to the extended capability of acinar cell differentiation by Hes1 inactivation, we obtained no evidence of islet neogenesis from Hes1-depleted duct cells in physiological or PDL-induced injured conditions.
    Scientific Reports 02/2015; 5:8518. DOI:10.1038/srep08518 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is one of the deadliest human malignancies, with few therapeutic options. Re-activation of embryonic signaling pathways is commonly in human pancreatic cancer and provided rationale to explore inhibition of these pathways therapeutically. Notch signaling is important during pancreatic development, and it is re-activated in pancreatic cancer. The functional role of Notch signaling during pancreatic carcinogenesis has been previously characterized using both genetic and drug-based approaches. However, contrasting findings were reported based on the study design. In fact, Notch signaling has been proposed to act as tumor-promoter or tumor-suppressor. Given the availability of Notch inhibitors in the clinic, understanding how this signaling pathway contributes to pancreatic carcinogenesis has important therapeutic implications. Here, we interrogated the role of Notch signaling specifically in the epithelial compartment of the pancreas, in the context of a genetically engineered mouse model of pancreatic cancer. To inhibit Notch signaling in the pancreas epithelium, we crossed a mouse model of pancreatic cancer based on pancreas-specific expression of mutant Kras with a transgenic mouse that conditionally expresses a dominant negative form of the Mastermind-like 1 gene. MAML is an essential co-activator of the canonical Notch signaling-mediated transcription. DNMAML encodes a truncated MAML protein that represses all canonical Notch medicated transcription in a cell autonomous manner, independent of which Notch receptor is activated. As a result, in mice co-expressing mutant Kras and DNMAML, Notch signaling is inhibited specifically in the epithelium upon Cre-mediated recombination. We explored the effect of epithelial-specific DNMAML expression on Kras-driven carcinogenesis both during normal aging and following the induction of acute pancreatitis. We find that DNMAML expression efficiently inhibits epithelial Notch signaling and delays PanIN formation. However, over time, loss of Notch inhibition allows PanIN formation and progression. Epithelial-specific Notch signaling is important for PanIN initiation. Our findings indicate that PanIN formation can only occur upon loss of epithelial Notch inhibition, thus supporting an essential role of this signaling pathway during pancreatic carcinogenesis.
    BMC Cancer 11/2014; 14(1):862. DOI:10.1186/1471-2407-14-862 · 3.32 Impact Factor

Full-text (3 Sources)

Available from
May 21, 2014